

Metabolomic fingerprinting of phenolic compounds in blood serum from rats treated with chestnut shells extract

Diana Pinto, Andreia Almeida, Anallely López-Yerena, Bruno Sarmento, Rosa Lamuela-Raventós, Anna Vallverdú-Queralt, Cristina Delerue-Matos, Francisca Rodrigues*

*francisca.rodrigues@graq.isep.ipp.pt

State of art

✓ 1/3 of food production is wasted

Principal causes

- √ 88 M tonnes are generated annually
- ✓ Associated costs estimated at 143 billion euros

Sustainability Challenge

State of art

Macronutrients & Micronutrients

Vitamins Mineral **Polyphenols**

In vitro

Antioxidant
Anti-inflammatory
Hypoglycemic
Hypolipidemic

In vivo

Anti-obesity Anti-inflammatory Hepatoprotective

enols in blood

Objectives

Investigate the targeted metabolomic profile of polyphenols in blood serum from rats orally treated with an eco-friendly chestnut shells extract

LC-ESI-LTQ-Orbitrap-MS

This is the **first study** that proposes a comprehensive analysis of the **metabolomic fingerprinting of phenolics-enriched chestnut shells** extract in **blood serum** after oral treatment of rats.

Experimental design

Phenolic acids

Hydroxybenzoic acids & Hydroxycinnamic acids

Flavonoids

Lignans

Other polyphenols

Phase I

Hydrogenation

Phase II

- Methylation
- Sulfation
- Methylation + Sulfation
 - Unmetabolized form

Phase II & gut microbiota

- Dimethylation
 - Unmetabolized form &

Urolithin A metabolites from methylation & sulfation

Phase II

- Sulfation
- Glucuronidation
- (Di)methylation + Sulfation or Glucuronidation

Syringic acid

H₃CO

Unmetabolized form

Phase II

Methylation

OCH₃

• (Di)methylation + Sulfation

Phase I & II

- Hydrogenation
- Hydrogenation + Sulfation or Glucuronidation
- Sulfation

Phase I & II

- Hydroxylation
- Hydrogenation
- Hydrogenation + Sulfation or Glucuronidation
- Methylation + Sulfation or Glucuronidation
- Hydrogenation + Methylation + Sulfation

Phase II

- Sulfation
- Dimethylation + Sulfation

Unmetabolized form

Phase II

- Sulfation
- Glucuronidation

Phase II

Glucuronidation

Unmetabolized form

.OH

Phase II & gut microbiota

- Enterodiol + Disulfation
- Enterolactone + Glucuronidation

Unmetabolized form

ОН

Catechol

Phase II

- Methylation
- Glucuronidation
- Sulfation
- Methylation + Sulfation

- ✓ A total of 52 compounds were identified, mostly phenolic acids & metabolites.
- ✓ 80% of the metabolites resulted from **phase II** reactions; the remaining 20% derived from **phase I**.
 - ✓ 11 compounds correspond to **parent compounds**; the remaining represent their metabolites.

Conclusion

The **detection** of parent compounds in serum **attested their absorption** in **unmetabolized** form.

Phase II metabolites were secreted into circulating blood due to their high polarity and molecular weight.

Identical metabolomic profile for both CS extract groups.

This work validate for the first time a new nutraceutical ingredient extracted from chestnut shells.

Acknowledgments

- PTDC/ASP-AGR/29277/2017
- UIDB/50006/2020 & UIDP/50006/2020
- SFRH/BD/144534/2019
- CEECIND/01886/2020
- RYC-2016-19355

Thank you for the attention!