Indoor Air Quality (PM_{2.5} and PM₁₀) and Toxicity Potential at a Commercial Environment in Akure, Nigeria[†]

Francis Olawale Abulude^{1,*}, Kikelomo Mabinuola Arifalo², Ademola Adamu², Amoke Monisola Kenni³, Akinyinka Akinnusotu⁴, Samuel Dare Oluwagbayide⁵, Sunday Acha⁶

¹Science and Education Development Institute, Akure, Ondo State, Nigeria ²Department of Chemistry, Bamidele Olumilua University of Education, Science and Technology, Ikere -Ekiti, Ekiti State, Nigeria

³Department of Science Education, Bamidele Olumilua University of Education, Science and Technology, Ikere - Ekiti, Ekiti State, Nigeria

⁴Department Science Laboratory Technology, Rufus Giwa Polytechnic, P.M.B. 1019, Owo, Ondo State, Nigeria

⁵Department of Agricultural and Bio-environmental Engineering, Federal Polytechnic, P.M.B. 50, Ilaro, Ogun State, Nigeria

⁶Department of Geography, Federal University of Technology, Minna, Niger State, Nigeria * Correspondence: walefut@gmail.com; Tel.: (+2348034458674)

† Presented at the 4th International Electronic Conference on Environmental Research and Public Health — Climate Change and Health in a Broad Perspective

15-30 Oct 2022

INTRODUCTION

- In general, neither developing nor developed countries take the effects of air pollution for granted.
- Pollutant gases (O₃, NO₂, SO₂, and CO) and particulate matter (PM PM₁₀ and PM_{2.5}) are the main culprits of air pollution.
- Various studies have shown particle pollution exposure to a variety of problems, including: premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma [1].
- The studies on pollutant toxicity potential have been motivated by growing human health concerns about PM inhalation.

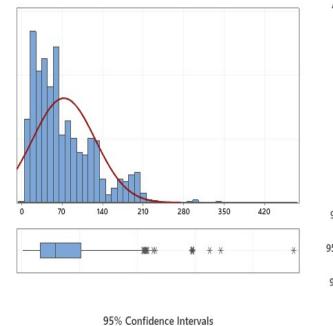
Objective

The objective of this study was to assess the levels of PM_{2.5}, PM₁₀, the PM_{2.5}/PM₁₀ ratio, and the toxicity potential (TP) of a commercial area in Akure, Ondo State, Nigeria.

MATERIALS AND METHODS

- Study Location: The research was carried out at the Federal College of Agriculture, Akure, REC campus commercial area (5 14 23.94 E 7 5 49.34 N).
- Sensor Used: A low-cost Canāree A1 sensor an Intelligent Particle Sensor
- Duration: Three-month monitoring

(March to May 2022) of PM_{10} and $PM_{2.5}$ in the study for 6 h each day.

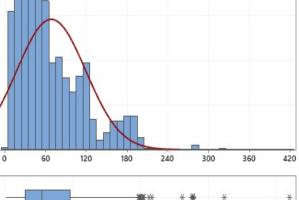


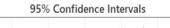
Canāree low-cost sensor

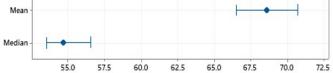
 Statistical Analysis: The generated data was statistically manipulated using Minitab and Excel 2013 software, producing basic summary reports and a bar chart, respectively

RESULTS AND DISCUSSION

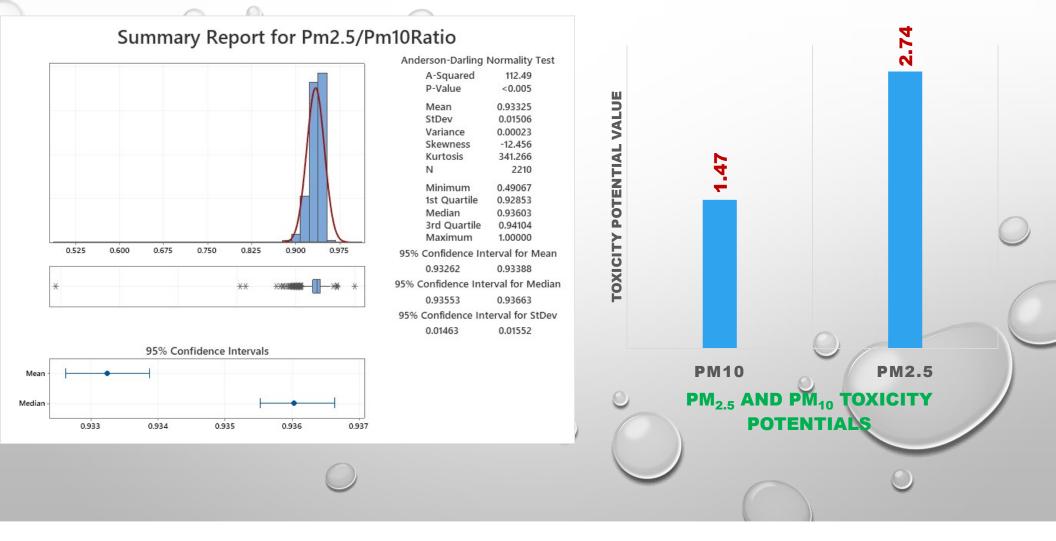
Summary Report for PM10 (μ g/m3)




Anderson-Darling	Normality Test
A-Squared	64.92
P-Value	< 0.005
Mean	73.234
StDev	53.939
Variance	2909.414
Skewness	1.30262
Kurtosis	2.39927
Ν	2210
Minimum	1.263
1st Quartile	32.858
Median	58.610
3rd Quartile	102.955
Maximum	469.799
95% Confidence In	terval for Mean
70.984	75.484
5% Confidence Inte	erval for Median
57.187	60.501
95% Confidence Int	terval for StDev
52.394	55.578



Summary Report for PM2.5 (µg/m3)



Anderson-Darling	Normality Test
A-Squared	65.45
P-Value	< 0.005
Mean	68.583
StDev	50.636
Variance	2564.037
Skewness	1.26819
Kurtosis	2.04574
N	2210
Minimum	1.263
1st Quartile	30.772
Median	54.698
3rd Quartile	96.241
Maximum	419.126
95% Confidence Interval for Mean	
66.471	70.695
95% Confidence Interval for Median	
53.563	56.567
95% Confidence Interval for StDev	
49.186	52.175

RESULTS AND DISCUSSION ... contd

The findings

- that the WHO 2021 guidelines were exceeded.
- The PM_{2.5}/PM₁₀ ratios were low
- The presence of PM could be attributed to fumes from the generator and vehicles in the study area.
- TP greater than one
- There is a health concern, especially for the vulnerable (the sick, children, and the elderly).

ONCULSIONS

Constant monitoring is advised.

REFERENCES

[1]. WHO. WHO global air quality guidelines: particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. 2021. https://apps.who.int/iris/handle/10665/345329.

COLEABORATION

As Researchers, my team and I are ready to collaborate with you regarding to air pollution mitigation

THANKS FOR LISTENING