

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

El Rhabori Said ^{1,*}, El Aissouq Abdellah ¹, Chtita Samir ² and Khalil Fouad ¹

¹ Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco;

² Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco.

* Corresponding author: said.elrhabori@usmba.ac.ma

In silico drug discovery of new anti-breast cancer inhibitors based on 3D-QSAR, molecular docking and ADMET investigation

Abstract:

Breast cancer is a common kind of cancer affecting women with a fatal outcome. Due to extensive treatment cycles, breast cancer resistance has now become a worldwide issue. Therefore, the only realistic treatment is the rapid development anti-breast cancer medications. To improve and propose new anti-breast cancer drugs, three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking studies on thioguinazolinone derivatives with aromatase enzyme (PDB: 3S7S) were attempted. Comparative Molecular Similarity Indices Analysis (CoMSIA) was utilized to develop the 3D-QSAR model in this study. The best CoMSIA model (with considerable values of Q^2 , R^2 and R_{pred}^2) was also utilized in an effort to get the high predictability. External validation that uses a test set has been utilized to validate the predictive ability of the fitted model. According to the findings, the Electrostatic, Hydrophobic, Hydrogen Bond Donor and Acceptor fields had a serious influence on anti-breast cancer activities. Thus, we designed a variety of novel effective aromatase inhibitors based on prior findings and predicted their inhibitory activities using the best model. Moreover, ADMET investigations were employed to analyze the pharmacokinetic properties of drug-candidates. abstract.

Keywords: Breast cancer; Thioquinazolinone derivatives; QSAR; Molecular docking; ADMET

есмс 2022

Plan

- Introduction
- Methodology
- Results and Discussion
- Conclusion

Quantitative Structure Activity Relationship (QSAR)

Methodology

ADMET investigations :

- Absorption ; How much of the drug is absorbed and how quickly?
- Distribution; Where is the drug distributed within the body? What is the rate and extent of the distribution?
- Metabolism; How fast is the drug metabolized? <u>What is the mechanism</u> <u>of action</u>? What metabolite is formed and is it active or toxic?
- Elimination; How is the drug excreted and how quickly?
- Toxicity; Does this drug have a toxic effect to body systems or organs?

ECMC 2022

Dataset collection

Molecular alignment and 3D-QSAR models generation

Alignment of molecules

Figure 1. Superposition and alignment of the 24 studied compounds utilizing the most active molecule as a template

CoMSIA investigation

Statistical parameters of the best model (CoMSIA/EHDA):

$$Q^2 = 0.589$$

- N=2

$$R^2 = 0.749$$
; SEE = 0.242 ; F-test = 20.872

$$R_{pred}^{2} = 0.621$$

Table 1. Fields' fraction of CoMSIA analysis

COMSIA Fields	Norm.Coeff.	Fraction
COMSIA_ELECTROSTATIC	0.305	0.152
COMSIA_HYDROPHOBIC	0.182	0.091
COMSIA_ACCEPTOR .	0.422	0.210
COMSIA_DONOR_AND_ACCEPTOR (Steric)	0.422	0.210
COMSIA_DONOR_AND_ACCEPTOR	0.674	0.336
(Electrostatic)		•

ЕСМС 2022

Visualization of CoMSIA :

Figure 2. Contour maps of CoMSIA analysis with 2 Å grid spacing in combination with most active molecule

ECMC 2022 01–30 NOVEMBER 2022 | ONLINE Conference on Medicinal Chemistry

Molecular docking process

Figure 6. 3D interactions of most active molecule (a) and least active (b) molecule with aromatase enzyme.

ЕСМС 2022

The predicted active site of target protein (PDB ID: 3S7S) :

The crucial amino acids ; MET374, ARG115, PHE134, ILE133, ALA306, LEU477, PHE221, VAL370, TRP224 and VAL373

Figure 8. 2D interactions of most active molecule (a) with aromatase enzyme.

Design of new compounds

Based on visualization fields of CoMSIA/EHDA model and the interactions of docking studies, new molecules (Ligand1, Ligand 2 and Ligand 3) have been designed:

Molecular Docking of new compounds

Figure 10. 2D and 3D interactions of the new designed Ligands with aromatase enzyme

ECMC 2022

Table 2. Docking results of the designed ligands and the most active molecule as reference								
Ligands	Complex	Binding energy (Kcal /mol)	Hydrogen-Binding interactions (HB)		Hydrophobic interactions	Electrostatic Interactions		
			Acceptors HB	Donors	Pi / alkyl; pi; sigma	Cation/anion		
			•	HB				
				4 HB with LEU 372 /	LEU 477-VAL 370-	0/0427		
Ligand 1	Ligand1 - 3S7S	-11.300	MET 374-ALA 438	Pi;	ILE 133-	CYS437-		
				CYS 437	CYS 437-ALA 438	MET 303		
				2 HB with LEU 372 /	LEU 477-VAL 370-			
Ligand 2	Ligand2 - 3S7S	-11.100	MET 374-ALA 438 -ARG 115-CYS 437	Pi;	ILE 133-	CYS 437		
			115 015 457	CYS 437- ALA 438	CYS 437-ALA 438			
				2 HB with LEU 372	LEU 477-VAL 370-			
Ligand 3	Ligand 3 -3S7S	-10.910	MET 374-ALA 438-CYS 437	/Pi;	ILE 133-	CYS 437		
				CYS 437	CYS 437-ALA 438			
					ALA 438-			
					ALA 306 (2			
Active	Activo moloculo			LEU 477/ Pi; 2 HB	interactions) -	MET 374-		
molecule	3S7S	-10.900	2 HB with ARG 115	with CYS 437-THR 310	ILE 133-	CYS 437		
					MET 311-ALA443-			
					VAL 373			

ECMC 2022

Conclusions

According to 3D-According to QSAR, ADMET and molecular statistic parameters,Co docking results, MSIA model 📥 the structures of showed strong new designed molecules may be predictive exploited to performance increase the inhibition of the

3D-QSAR (CoMSIA) was used to develop a variety of novel thioquinazolinone derivatives

ECMC

2022

Consequently, we may change the structures of these designed compounds to discover novel anti-breast cancer dugs.

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

breast cancer

ECMC 2022