

Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and Molecular Dynamics Investigation

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Vitor M. de Almeida¹ and Osvaldo A. Santos-Filho¹ *

- ¹ Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
- * Corresponding author: osvaldo@ippn.ufrj.br

Abstract: Ligand and structure-based computational screening tools were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an inhibitor of the allosteric site of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as the reference compound. Molecular docking and molecular dynamics simulations were performed for the screened flavonoids, which showed anticancer activity. Two of these flavonoids were identified as potential inhibitors of IDO1. Molecular dynamics simulations were also used to assess the conformational profile of IDO1.

Keywords: cancer, immunology, flavonoids, IDO1, virtual screening, molecular docking, molecular dynamics, free energy

ЕСМС 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Introduction

pharmaceuticals

Article Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and Molecular Dynamics Investigation

Vitor Martins de Almeida and Osvaldo Andrade Santos-Filho *

Laboratório de Modelagem Molecular e Biologia Estrutural Computacional, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, Rio de Janeiro 21941-599, RJ, Brazil

* Correspondence: osvaldo@ippn.ufrj.br

Pharmaceuticals 2022, 15, 1099. https://doi.org/10.3390/ph15091099

https://www.mdpi.com/journal/pharmaceuticals

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

https://ebismedical.com/cancer-treatments/

Kyrurenine pathway

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Indoleamine 2,3-dioxygenase-1

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Inhibitors

Röhrig, U. F., Reynaud, A., Majjigapu, S. R., Vogel, P., Pojer, F., et al. 2019, September 17. Inhibition Mechanisms of Indoleamine 2,3-Dioxygenase 1 (IDO1). Journal of Medicinal Chemistry. American Chemical Society (ACS).

000

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3dioxygenase 1 activity

 Allosteric site elucidation by molecular docking and main residues (Pro182 e Phe185)

Sophora flavescens K.

- Flavonoid from *Sophora flavescens* K.
- Kushenol E

Allosteric site

Kwon M, Ko SK, Jang M, et al. Inhibitory effects of flavonoids isolated from *Sophora flavescens* on indoleamine 2,3-dioxygenase 1 activity. *J Enzyme Inhib Med Chem*. 2019;34(1):1481-1488. doi:10.1080/14756366.2019.1640218

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE

Computer aided drug design

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Results

Kushenol E

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

NPs	Affinity (kcal/mol)	NPs	Affinity (kcal/mol)
chamuvaritin	-7,9	Kushenol C	-6,5
chamaejasmin B	-7,9	butin	-6,5
dichamanetin	-7,8	strobopinin	-6,4
chamaejasmin	-7,7	rhamnocitrin	-6,4
neochamaejasmin A	-7,6	7-benzyloxycoumarin	-6,3
obovatin	-7,5	naringenin	-6,3
isochamanetin	-7,5	uvaretin	-6,2
B-naphthoflavone	-6,9	pinocembrin	-6,1
pinobanksin	-6,9	genkwanin	-6,1
techtochrysin	-6,8	glabranin	-6
sophoraflavanone B	-6,7	7-hydroxyflavanone	-6
strobopinin methylether	-6,7	apigenin diethylether	-6
diuvaretin	-6,6	2-hydroxyflavanone	-6
izalpinin	-6,6	asebogenin	-5,9
Kushenol E	-6,6		

Chamaejasmin B

Stellera chamaejasme L

Dichamanetin

Xylopia pierrei (Hance) Kuntze

Uvaria chamae P.Beauv.

Piper sarmentosum Roxb.

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry

Isochamanetin

Uvaria chamae P.Beauv.

Xylopia pierrei (Hance) Kuntze

Sphaeranthus amaranthoides Burm.f

000

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Compound	Molecular structure	H bond	van der Waals	pi- <u>alquil</u>	pi-sigma	pi-pi	alquil	Unfavorable
		Phe185,	Tyr15, Ile181, Gln189,	Pro182,		Phe185	Lys186,	
chamaejasmin	OH OF OH	Asn313	Met188, Phe306, Ser309,	Pro314			Pro182	
В	но стори		Leu310					
	HO	Ser12,	Ala13, Tyr15, Lys179,	Pro182	Pro182	Phe185		
dichamanetin		Gly11	Ile181, Lys186, Gln189,					
			Phe306, Ser309, Leu310,					
	8 он он		Asn313, Pro314					
isochamanetin	он он о	Ser12,	Gly11, Ala13, Lys179,	Pro182	Pro182	Phe185		
			Lys186, Gln189,					
	HOHO		Asn313, Pro314					
<u>Kushenol</u> E	HO OH OH	Ser12	Gly11, Lys179, Phe185,	Pro182	Pro182		Ile181,	
			Lys186, Gln189,				Pro182,	
			Asn313, Pro314				Phe306,	
							Leu310	
	но 0 А	Asn313	Ser12, Tyr15, Phe185,	Pro182				Gln189
steppogenin			Lys186, Phe306, Ser309,					
	HO		Leu310, Pro314					
	но он							

Radii of gyration

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

RMSD

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

RMSF

- EF loop (Gly278 -His287)
- JK loop (Pro361 Thr-378)

000

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Hydrogen bonds

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Free energy calculations MM-PBSA

 $\Delta G_{bind} = \langle G_{COM} \rangle \neg \langle G_{REC} \rangle \neg \langle G_{LIG} \rangle$

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Free energy calculations

Energy	Kushenol E	Steppogenin	dichamanetin	isochamanetin	
Component	∆G (kcal/mol)	∆G (kcal/mol)	∆G (kcal/mol)	ΔG (kcal/mol)	
van der Waals	-33.4464 +/- 2.7222	-12.6589 +/- 5.4591	-38.7571 +/- 2.8011	-33.1692 +/- 2.6773	
Electrostatic	-0.4995 +/- 2.3494	-9.5176 +/- 5.6553	-8.1238 +/- 3.5253	-2.7772 +/- 2.1816	
Polar Solvation	16.2786 +/- 3.5898	18.1821 +/- 8.5497	25.4326 +/- 4.2624	17.7325 +/- 2.3312	
SASA	-3.9866 +/- 0.2390	-1.7428 +/- 0.7148	-4.4861 +/- 0.2483	-3.8790 +/- 0.3585	
Free energy of interaction	-21.6563 +/- 3.1142	-5.7373 +/- 5.2005	-25.9345 +/- 3.1214	-22.0960 +/- 3.1859	

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Energy contribution per residue

_	Allosteric	steric Kushenol E steppogenin dichamanetin		isochamanetin		
_	site	∆G (kcal/mol)	ΔG (kcal/mol)	∆G (kcal/mol)	ΔG (kcal/mol)	
	Lys 179	-5.6572 +/- 0.009	0.0522 +/- 0.0146	-10.2480 +/- 0.0138	-0.1242 +/- 0.0023	
	Ile181	-5.5043 +/- 0.003	-0.0478 +/- 0.0006	-7.1328 +/- 0.0045	-5.9646 +/- 0.0042	
	Pro182	-2.7174 +/- 0.009	-0.6856 +/- 0.0075	-2.9304 +/- 0.0094	-0.9383 +/- 0.0058	
	Phe185	-9.7036 +/- 0.0064	-0.1037 +/- 0.0017	-10.9729 +/- 0.0063	-2.6943 +/- 0.0152	
	Lys186	-0.0069 +/- 0.0271	-0.6023 +/- 0.0201	-12.8116 +/- 0.0194	-3.0506 +/- 0.0093	
	Met188	-0.1075 +/- 0.0007	-0.0451 +/- 0.0006	-0.1199 +/- 0.0006	-6.0922 +/- 0.0049	
	Gln189	-4.2292 +/- 0.0045	-0.0770 +/- 0.0020	-4.7260 +/- 0.0061	-7.7712 +/- 0.0108	
	Phe306	-13.3145 +/- 0.0084	-0.0055 +/- 0.0003	-14.2844 +/- 0.0076	-7.4103 +/- 0.0070	
	Ser309	0.0639 +/- 0.0090	0.0004 +/- 0.0012	0.1190 +/- 0.0077	2.6300 +/- 0.0092	
	Leu310	-6.0265 +/- 0.0047	-0.0027 +/- 0.0004	-6.1063 +/- 0.0043	-6.0442 +/- 0.0048	
	Asn313	3.2576 +/- 0.0086	-0.0099 +/- 0.0015	-0.0466 +/- 0.0065	-0.0041 +/- 0.0150	
	Pro314	-0.0440 +/- 0.0013	-0.0007 +/- 0.0007	-0.0231 +/- 0.0009	-5.5250 +/- 0.0143	

Conclusion

- Identification of Natural Products that Interact with the allosteric Site
- Dichamanetin, isochamanetin and Kushenol E within the same flavonoid class
- Future work is needed to verify its biological diligence

Acknowledgments

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE