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Abstract: Vaccinia H1-related phosphatase (VHR) is a dual-specific phosphatase that is a 
promising potential target for the treatment of many human diseases. In this work, we have 
proposed a series of 6-(4-chlorophenyl)-N-aryl-4-(trichloromethyl)-4H-1,3,5-oxadiazin-2-
amines as potential VHR inhibitors. The SuperPred online server predicts VHR inhibition for 
the studied compounds with a probability of 88.88-98.51%. To establish the efficiency of 
binding of 4H-1,3,5-oxadiazine derivatives to the active site of VHR (PDB ID: 3F81) in the 
AutoDock Vina program, we have carried out molecular docking studies. According to its 
results, the studied compounds effectively interact with the hydrophobic region of the VHR 
active site due to aromatic rings and the trichloromethyl group, but the polar catalytic cavity 
is not involved, and therefore inhibition cannot be effective. In this regard, we have built a 
number of model compounds containing a sulfate group and its derivatives (methyl ester and 
amide) in the para-position of the arylamine fragment. According to the results of molecular 
docking, these compounds effectively bind to the polar catalytic cavity of the enzyme due to 
hydrogen bonds, but due to the relative rigidity of their molecules, hydrophobic interactions 
are not fully realized. Therefore, in these model compounds between the arylamine fragment 
and the sulfo group, we introduced a spacer with a length of one to three methylene groups. 
Hit compounds have been selected - 2-(4-((6-(4-chlorophenyl)-4-(trichloromethyl)-4H-1,3,5-
oxadiazin-2-yl)amino)phenyl)ethane-1-sulfonic acid and its amide. 
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Introduction 

Figure 1. Ratio of some newly diagnosed cancers in 2020. 
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Introduction 

Figure 2. The ratio of deaths from certain types of cancer as of 2020. 
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Figure 3. Structure of VHR (a) and some of its inhibitors (b). 
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Figure 4. Structures of the studied compounds as potential VHR inhibitors. 
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Results and discussion 

Figure 5. The position of the SA3 molecule in the active site of the VHR according to 
the results of molecular docking studies. 
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3, ∆G = -7.4 kcal/mol 8, ∆G = -7.2 kcal/mol 

  
17, ∆G = -7.1 kcal/mol 19, ∆G = -7.1 kcal/mol 

 

Results and discussion 

Figure 6. Position of molecules 3, 8, 17, and 19 in the VHR active site from molecular 
docking studies. 
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Results and discussion 

Figure 7. Algorithm for creating 
model connections MC1-MC12. 

  
MC-1, ∆G = -7.6 kcal/mol MC-4, ∆G = -7.8 kcal/mol 

  
MC-7, ∆G = -8.0 kcal/mol MC-10, ∆G = -7.5 kcal/mol 

 
Figure 8. Differences in the position of the molecules of the 
model compounds in the VHR active site depending on the length 
of the spacer between the sulfo group and the aromatic ring. 
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Conclusions 

In this work, using the methods of SAR prediction and molecular docking, we have 
tested 22 derivatives of 1,3,5-oxadiazine for the potential ability to inhibit VHR. It 
has been shown that the studied compounds effectively interact with the 
hydrophobic region of the VHR active site due to aromatic rings and the 
trichloromethyl group, but interaction with the polar catalytic cavity requires the 
additional introduction of a highly polar group into the aromatic substituent. In 
this regard, based on the principles of rational design, we have constructed a 
series of model compounds containing, directly or through a spacer, a sulfate 
group and its derivatives (methyl ester and amide) in the para- position of the 
arylamine fragment. According to the results of molecular docking, the most 
stable complexes with VHR are formed by model compounds containing sulfate or 
sulfamide groups and a spacer of two methylene groups. Hit compounds have 
been selected - 2-(4-((6-(4-chlorophenyl)-4-(trichloromethyl)-4H-1,3,5-oxadiazin-
2-yl)amino)phenyl)ethane-1-sulfonic acid and its amide, which are superior to the 
known SA3 inhibitor in terms of binding strength to VHR. 
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