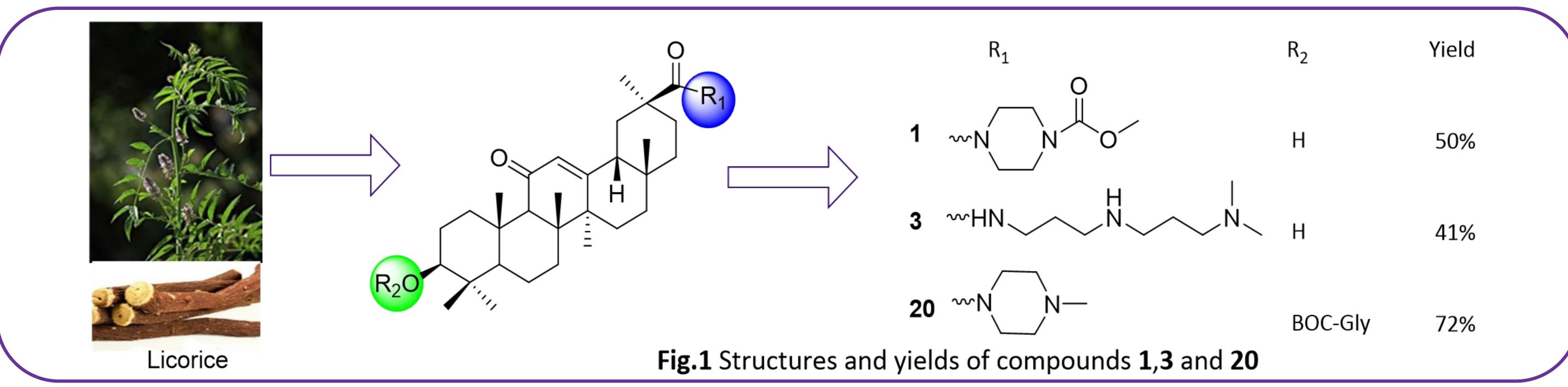
Design, Synthesis, and Biological Activity of 188-Glycyrrhetinic Acid **Derivatives and Their Metal Complexes**


Caiyun Yang ¹,Xinhui Pan^{* 1,2},Xiaoda Yang^{* 1,2}

¹ Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi, 832002

² Stake Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191

Introduction

The increasing morbidity and mortality caused by infections with pathogenic bacteria (fungus) or bacteria) have highlighted an urgent requirement for developing novel anti-bacterial agents to protect the health and integrity of human life. 188-glycyrrhetinic acid has a wide range of pharmacological effects including anti-bacterial, anti-inflammatory and anti-tumor. However, its relatively low biological activity and high toxicity limit its potential for anti-bacterial and other pharmaceutical applications. To improve the anti-bacterial activity of 188-glycyrrhetinic acid, we designed and synthesized a series of glycyrrhizic acid derivatives.

Results

Table 1. In Vitro antibacterial and antifungual activity of selected derivatives

MIC ₈₀ (μg/mL)						
Compounds —	Fungal			Bacteria		
	C.albicans	C.neoformans	A.fumigatus	S.aureus	E.coli	P.aeruginosa
1	4	2	nd	nd	nd	nd
3	4	2	nd	nd	nd	nd
20	16	>256	32	128	256	4
Fluconazole	2	2	2	nt	nt	nt
Amphotericin B	2	64	16	nt	nt	nt
Streptomycin	nt	nt	nt	2	2	2

nd:Not determined; nt:Not tested.

Conclusion

In the present work, we synthesized a series of 188-glycyrrhetinic acid derivatives and studied their inhibitory effects on three pathogenic fungi and three pathogenic bacteria. The results showed that most of the derivatives had a good inhibitory effects on fungi and bacteria. Among them, the inhibitory activity of compounds **1** (MIC:2 μ g/mL)and **3** (MIC:2 μ g/mL) against *Candida albicans* and the inhibitory activity of compound **20** (MIC:4 µg/mL) against Pseudomonas aeruginosa were comparable to those of the positive drugs. We will elucidate the mechanism and further identify biological targets for drug design.

