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Abstract: Dealing with distributed and parallel computing in strong heterogeneous environments, 

e.g., distributed sensor networks, is still a challenge at the algorithmic, communication, and ap-

plication levels. Heterogeneity is related to different computer and network (communication) ar-

chitectures. Virtualization can hide and unify heterogeneity. Besides inter-process communication 

and synchronization, the unified access and monitoring of computing nodes (devices, computers, 

processors) is required to handle distributed and parallel systems in a comfortable and 

easy-to-access manner. Especially in education, the access and control of a large set of computing 

nodes is difficult, which lowers the learning curve significantly. In this work, a unified distributed 

and parallel framework and Web tools are introduced using Virtual Machines (VM) and Web 

browsers to control them. The framework enables the control, monitoring, and study of distribut-

ed-parallel systems, especially addressing sensor networks and IoT networks. Nodes can be ar-

ranged in a graphical drawing world or script-based. Virtual network nodes are assigned to VM 

instances that can be created inside the browser using Web worker processes or can be attached to 

externally running VM instances via a Web control API. New VM instances or processes can be 

started and controlled instantly. The graphical UI provides access to the internal and external 

nodes, programming editors, and monitor shells. The VMs can be generic, but in this work there is 

a focus on JavaScript and Lua. The framework provides augmented virtuality, i.e., a coupling of 

physical and virtual worlds. 

Keywords: Virtualisation; Virtual Machines; Distributed Data Processing; sensor networks; Inter-

net of Things; Network Simulation; augmented virtuality 

 

1. Introduction 

The introduction should briefly place the study in a broad context and define the 

purpose of the work and its significance. 

For papers that report original research, you should use the titles “Materials and 

Methods”, “Results”, “Discussion” and “Conclusions” (optional). 

1. Introduction 

Virtual network computing has its origins long ago in teleoperation [1]. The aim of 

virtual network computing is the split of application software and hardware. But com-

munication was commonly limited to pure data exchange and well-defined Remote 

Procedure Calls (RPC) that could be requested by a thin client on a remote server. There 

are client processes and server processes that provide an operational service. Virtual 

networking itself is basically a mapping of physical communication graphs onto logical 

ones. The Internet is a prominent example, especially concerning IPv6 protocols that hide 

the physical location of computers. In [2], network virtualization has been proposed as a 
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promising way to overcome the current limitations of the Internet by allowing multiple 

heterogeneous virtual networks (VNs) to coexist on a shared infrastructure. Studying 

distributed algorithms and monitoring and evaluating distributed systems is still a chal-

lenge, especially in education. The Web browser is today’s expressive and powerful 

software to create network applications (Laboratory in the Web browser [3]) without the 

requirement of software installation and dependency conflicts. 

Simulation of communication on different levels plays an important role in the de-

velopment and evaluation of distributed algorithms, protocols, systems, and hardware 

components. Hardware-in-the-loop simulations couple simulated processes and devices 

with real devices. Examples include ns2 and ns3, as well as more recent frameworks such 

as Jist, a Java-based simulator, and SimPy, a Python-based simulator [4]. These simula-

tors perform an abstraction of processes and devices. 

In this work, Virtual Machines (VM) can be deployed everywhere and connected 

with a Web browser-based network control software framework. Additionally, most of 

the VMs can be processed in the Web browser software, too, either directly (any JavaS-

cript-based VMs) or by using VM-in-VM implementations (like for Lua). The VNetOS is 

the software layer that provides operations and the components to merge internally and 

externally deployed VM instances. VM instances are processed in worker processes (ei-

ther WebWorker, threads, or system processes) and can be accessed and controlled by the 

unified Network Management Protocol (NMP), supporting Web browsers, too. The Vir-

tual Network Operating System (VNetOS) is a collection of protocols and software 

modules that enable the design and evaluation of large-scale heterogeneous computer 

networks with an easy-to-use and powerful GUI processed in the Web browser. Appli-

cations of the software framework are education, simulation, and real-world system 

control of embedded system networks. The next sections introduce the principle network 

and communication architecture, the software framework, a customized multi-computer 

based on a 5$ tiny embedded system directly controllable and programmable via the 

Web browser, and an evaluation. 

2. Network Architecture 

The general architecture consists of a generic network graph G = 〈N,P,C〉 with VM 

nodes N that can process a textual programming language L, a set of communication 

ports P attached to nodes, and communication connections (links) L between ports. Ja-

vaScript, e.g., can be processed directly in the Web browser or by an external VM like 

node.js. Each VM vm typically supports one control path γ and is executed in a dedicated 

worker thread or process. New VM instances can be created at run-time from a root node. 

External VM instances can be controlled by JSON-based Web Remote Procedure Call 

(RPC) services that can be accessed via HTTP, HTTPS, WebSocket (WS), or WSS IP pro-

tocols from the browser or other nodes. HTTP and WS without certificate-based security 

level are relevant for embedded systems since certificate management is not suitable for 

embedded systems. Instead, key-based encryption can be used for secure communica-

tion. Additionally, a worker that was forked from a root node can be controlled via the 

root node too, e.g., in the case the worker hangs in an endless loop. Because most VMs are 

strictly single-threaded, they cannot handle IO requests (such as signals or worker ter-

mination) and computation at the same time (at least not at a high level). 

Firstly, three different VMs are considered in this work: 

1. JavaScript (using V8/Spidermonkey/jerryscript [7] engines); 

2. Lua (C-Lua, eLua, LuaJit [8], Fengari Web/VM-in-VM [6]); 

3. JavaScript Agent Machine (JAM, programmed in JS, VM-in-VM, [5]). 

Secondly, three different host computers are considered: 

1. Generic desktop and mobile laptop computers (x86,x64, 2 cores, 2GHz clock) sup-

porting all VMs; 
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2. Embedded system Raspberry PI (Zero, 3, Arm, 1-2 cores, 1GHz clock) supporting all 

VMs; 

3. Tiny embedded system ESP32 (Tensilica, 2 cores, 240MHz clock) supporting Lua 

primarily and JS VMs secondarily. 

A node provides control and generic communication ports for JSON-based RPC 

communication. Worker instances can access the node’s communication port via a mul-

tiplexer. Each worker instance provides a control port, too. Internal nodes are connected 

via virtual connection links (VC) handled by the JS main loop. External nodes provide 

IP-based communication ports. All link pair combinations are possible: Internal-internal, 

internal-external, and external-external. 

Arbitrary network topologies can be created, including star and mesh grids, typi-

cally using generic IP-based protocols like HTTP or WebSockets (WS). The use of secured 

(SSL) connections is difficult due to certificate provision on each node, but it is fully 

supported. The graphical front-end (or any script-based network configuration) connects 

the nodes automatically (if the nodes are reachable). 

There are two classes of VMs used in this framework: 

1. A root meta VM that is the main process providing a Web RPC API to create and 

control worker processes; 

2. The real target VM (JS, Lua, FORTH, …) that is executed in a worker process, 

providing an RPC service (especially for IO), too. 

Although, class A can execute the target programming language, too, only worker 

VMs are used for code processing. The main process as well as the worker processes ex-

ecute their own VM instance. A worker can be an isolated operating system process 

(primarily in the case of JS and JAM) or a lightweight thread process (Lua). In both cases, 

socket-based communication channels and shared memory are used for inter-VM com-

munication. The main VM is responsible for creating and controlling worker instances 

via NMP described in the next section. Remotely created workers live until they are ex-

plicitly terminated by the remote side or if the NMP connection of the remote side is 

dead. 

Each node provides generic communication ports (aside from the RPC control ser-

vice) that can be used by user programs to communicate between nodes. The communi-

cation ports can be linked ad hoc and provide JSON-based channels. Each port provides 

an IP port listener, except in the case of internal Web browser nodes, discussed in the 

software framework section. 

3. Software Framework 

The VNetOS software framework consists of the following parts: 

1. The Web browser GUI application with a 2D graphical network world consisting of 

graphical node entities with communication links between nodes, code editors with 

syntax highlighting, process monitor and interactive shell windows, and external 

node controllers; 

2. Internal VMs that can be embedded in the Web browser, i.e., can be provided in 

JavaScript or WebAssembly; 

3. External VMs with a Web RPC service that have virtual shadow nodes in the Web 

GUI; 

4. A set of programming modules supporting parallel and distributed programming 

(like CSP modelling, sensor access, RPC; for each target VM language there is an 

implementation). 

The general architecture is shown in Figure 1a with internal and external VMs, and 

generic communication links. The embedding of VMs in the Web browser is used for the 

simulation of networks, optionally connected with external nodes, or as part of the 
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computational network, providing a coupling of phyiscal and virtual worlds (virtual 

augmentation). Some VMs like Lua or Python require VM-in-VM implementations. 

A target VM is always processed in a forked worker process. All worker processes 

with independent VM instances communicate via (socket-based) channels with the main 

process. 

Communication between the Web controller and external nodes is established via 

the Network Management Protocol (NMP). NMP is session-based (but loosely coupled 

with the reconnect feature without losing state) and enables input and output redirection 

and worker process control. Each virtual representation of an external node in the Web 

GUI uses NMP to access external nodes and to create new VM instances (or agents in the 

case of JAM) and communication ports. NMP communication (e.g., polling for standard 

output and error streams from the VM) is event-based and dynamic to reduce the com-

munication costs (which can be significant if the Web browser application is connected to 

hundreds of external nodes). 

Generic data communication ports on external nodes as well as communication 

links between ports can be created via the Web browser application via NMP, too. A 

communication port on an external node with full network API (processed, e.g., by 

node.js) creates an IP listener that receives messages from other nodes. Internal nodes in 

Web browser workers cannot provide a listening port, but they can be connected to ex-

ternal nodes via push-pull communication (or by using bidirectional WebSockets), which 

is established from the browser side. Forwarding messages from internal to external 

nodes uses direct network requests, receiving messages from remote ports uses 

time-limited blocking network requests that are completed if there are messages for the 

browser port endpoint (except for WebSocket communication). WebSocket communica-

tion introduces a significant code overhead for HTTP(S) upgrades that are not available 

or suitable for tiny embedded systems. Therefore, HTTP(S) is primarily used. Commu-

nication between external nodes can use UDP/TCP ports, too. All VM worker instances 

created by the same root VM share communication ports. Each communication port is a 

local message multiplexer (CMUX), too, and messages sent from workers via a commu-

nication port are passed to the root VM process, which forwards the message to all reg-

istered connections and all other attached VM worker instances (see Figure 1b). De-

pending on the underlying process model (threads versa system processes), the for-

warding process (from worker to multiplexer and vice versa) can produce a significant 

extra overhead, as shown in the experimental section. The CMUX also implements 

IP-port forwarding between different nodes, including Web browser node communica-

tion. Each VM worker instance provides a port set mirror of the node’s port set. If a port 

is accessed within a VM worker, the access is routed up to the parent VM and the mes-

sage multiplexer (see Figure 1b). 

The 2D graphical world is a virtual view of the physical VM network and consists 

basically of graphical nodes (rectangles) associated with either internal or external VM 

nodes, e.g., a computer with a specific IP address. Each node representation is organised 

into slices. Each slice is assigned to a VM instance forked from the root node. Internal and 

external associations provide nearly the same operational set: Adding or removing code 

editors, creating worker instances with IO monitors, and interactive shells with IO mon-

itoring. Finally, generic communication ports and links between ports can be added. The 

entire graphical network representation, including code, can be saved and loaded in 

JSON format. Links can be established between internal nodes (using virtual channels), 

between internal and external nodes, and between external nodes. Ports and links are 

controlled on remote nodes via NMP. NMP is a lightweight protocol using generic IP 

communication (HTTP, e.g.,) that can be implemented even on low-resource embedded 

systems. 

Besides computational nodes, there are synthetic sensors and generic data sources 

that can be attached to internal nodes. These sensors inject data at specific time points or 

upon defined events. The data is either computed by an analytical function or consists of 
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pre-recorded data. A Monte Carlo simulation can be applied to introduce noise and 

sensor model variances. 

 

Figure 1. (a) General software framework and communication architecture with internal (double 

outline), external mapper (single outline), and external (dashed line) nodes. There are management 

communication ports (mPort) for connecting Web controllers with external nodes and generic 

communication ports (cPort) for inter-node communication (b) Message multiplexer architecture. 

To summarise, these different node classes are distinguished: 

I-Node. Internal node with an embedded meta VM processed by the browser JS VM. 

P-Node. External node processed by a native VM. 

V-Node. Virtual wrapper (twin) of a p-node in the Web browser with NMP access and 

control. 
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4. Multicomputer Platform 

Besides generic computers, embedded systems play an important role in the inves-

tigation and education of heterogeneous networks, including the Internet-of-Thing do-

main. One of the embedded devices is the raspberry PI Zero microcomputer. It is running 

with a full operating system (Linux Raspberry OS) and network protocol stack, but it is 

mostly still a generic computer. One scale level down, the tiny embedded ESP32 com-

puter is used. An ESP32 provides 512 kB RAM and 16 MB ROM with two Tensilica 32-bit 

processor cores. This is a pure application-specific device without an initial operating 

system and process shells. 

Furthermore, single embedded systems connected by VNetOS provide only loosely 

coupled distributed communication. Parallel computation can be exploited by multicore 

or multi-computer devices. To study distributed-parallel (clustered) computation, a 

multi-computer was designed with a set of ESP32 tiny embedded devices. The network 

control of each single ESP32 computer by the Web browser application is performed via 

WLAN/WiFi by the Web application, but the interconnect of the computers is realized by 

high-speed serial links on the development board, shown in Figure 2. An ESP32 has two 

freely usable UART devices with DMA capabilities and a maximal bit-rate of 5Mb/s. All 

ESP32 devices are connected to a central multi-port and parallel network switch imple-

mented with a FPGA. Device-to-devices communication is handled by the switch. To 

increase the bandwidth and to lower the communication latency, two serial links for each 

device are used in parallel, as shown in Figure 2. 

 

Figure 2. (Left) Prototype of the distributed-parallel multicomputer with 8 embedded ESP32 nodes 

and an FPGA-based internal network switch (Right) VNetOS GUI representation of the network 

(green box: editor, black rombus: VM instance monitor) 

Each device implements parts of the FreeRTOS operating system in a pure func-

tional API including WLAN/WiFi layers, serial communication, multi-threading, the 

node-level communication layer, and Lua VMs. Each Lua VM is processed in its own 

worker thread. The Lua VM (native C version, eLua) is booted with the required Web 

RPC service using NMP. The Web browser application can directly create and control 

Lua VMs on each device. Any logical device interconnection network structure created 

on the Web or by a host application can be selected by the FPGA network switch (full 

N:N multiplexer with queuing). The ESP32 devices are programmed via the Arduino IDE 

with code transfer via USB. The programming of each node is only required once. The 

user code is passed to and started on the VMs via the Web browser controller. 

5. Preliminary Experiments and Results 

Three principle experiments were performed: 

1. Network of 16/8 internal nodes arranged in a 2D mesh-grid; 

2. Network of 16/8 external nodes arranged in a 2D mesh-grid; 
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3. Hybrid 8 internal + 8 external nodes. 

An example configuration is shown in Figure 3 with four internal and two external 

nodes (Raspberry PI Zero) connected via WLAN. For each VM instance there is a code 

editor and an IO monitor shell window. Internal and external nodes can communicate 

directly via HTTP. 

 

Figure 3. Typical network application using VNetOS, a Web browser, and two external Raspberry 

PI devices. 

Each experiment was carried out with JS and Lua VMs. The Lua VM, either Fengari 

Lua VM for Web browser or the Parallel Luajit VM (plvm), and JAM VMs are extensively 

used in education and lecture courses (bachelor and master courses). The evaluation of 

lectures with student exercises of both VMs and the VNetOS (and some predecessors like 

LuaNetOS and the JAM laboratory) showed a steep learning curve, and even students 

with low programming skills were able to program and evaluate distributed systems. 

A dhrystone benchmark was performed for each target VM for normalized com-

parison. Performance results are shown in Table 1, which depends on the VM imple-

mentation, regarding both VM forking and messaging times between two nodes, tiVM and 

tcmsg, respectively. Lua can be easily embedded and forked using multi-threading, 

whereas node.js requires system process creation (at least some time ago), resulting in a 

instance creation time 100 times higher. Communication time is limited due to core 

bandwidth/latency and by the process/thread scheduling times required for message 

multiplexer invocation. Lua (LuaJit) shows superior performance compared to 

node.js/V8-based VMs and is a suitable VM for (tiny) embedded systems. The base 

memory requirement for each VM instance miVM is another important parameter, as 

shown in Table 1. Node.js (and Web browser engines) pose the highest start-up times and 

memory requirements, but also the highest computational power. 

Table 1. Selected experimental results of VM performance (dhrystones measured by the VM). 

Host  dhry/s  VM  tiVM  miVM  tcmsg  

PC/nodejs  5000 k  JS (ext)  140 ms  20 MB  3 ms  

PC/Firefox  4200 k  JS (int)  100 ms  10 MB  4 ms  

PC/plvm  600 k  Lua, Parallel LuaJit(+libuv) (ext)  3 ms  800 kB  0.1 ms  
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Host  dhry/s  VM  tiVM  miVM  tcmsg  

Raspberry PI Zero/nodejs  230 k  JS  1600 ms  20 MB  40 ms  

Raspberry PI Zero/plvm  40 k  Lua, Parallel LuaJit(+libuv) (ext)  10 ms  800 kB  1 ms  

ESP32/Lua  1 k  Lua, FreeRTOS (ext)  100 ms  100 kB  5 ms  

6. Conclusions 

A novel distributed virtualization framework for the deployment and control of 

heterogeneous networks of generic and embedded systems was introduced. The control 

of the distributed network is performed by a graphical Web browser application (or al-

ternatively, script-based). Via the Web application, each node can be controlled by the 

NMP protocol. Each physical node has a virtual representation in the Web application (or 

any other script-based control software). The physical and virtual nodes are connected 

via NMP. Each root node supports a programmable target VM (e.g., JS, Lua) and can in-

stantiate (fork) VM worker processes. VM instances can be connected with each other by 

using generic communication ports. The routing of messages is performed by a message 

router. Evaluation of the node performance identified VM forking and message routing 

times as critical, but strongly dependent on the underlying VM (LuaJit forking is 100 

times faster than node.js). Even tiny embedded systems can be used for distributed pro-

gramming and processing. Besides education, simulation and generic distributed net-

work control are core applications. 
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