

Eng. Proc. 2022, 4, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceeding Paper

VNetOS: Virtualised Distributed and Parallel Sensor Network

Operating Environment for the IoT and SHM †

Stefan Bosse

Department Mathematics & Computer Science, Bremen, and Institute for Digitization, University of Bremen,

Bremen, Germany; sbosse@uni-bremen,de

† Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net/.

Abstract: Dealing with distributed and parallel computing in strong heterogeneous environments,

e.g., distributed sensor networks, is still a challenge at the algorithmic, communication, and ap-

plication levels. Heterogeneity is related to different computer and network (communication) ar-

chitectures. Virtualization can hide and unify heterogeneity. Besides inter-process communication

and synchronization, the unified access and monitoring of computing nodes (devices, computers,

processors) is required to handle distributed and parallel systems in a comfortable and

easy-to-access manner. Especially in education, the access and control of a large set of computing

nodes is difficult, which lowers the learning curve significantly. In this work, a unified distributed

and parallel framework and Web tools are introduced using Virtual Machines (VM) and Web

browsers to control them. The framework enables the control, monitoring, and study of distribut-

ed-parallel systems, especially addressing sensor networks and IoT networks. Nodes can be ar-

ranged in a graphical drawing world or script-based. Virtual network nodes are assigned to VM

instances that can be created inside the browser using Web worker processes or can be attached to

externally running VM instances via a Web control API. New VM instances or processes can be

started and controlled instantly. The graphical UI provides access to the internal and external

nodes, programming editors, and monitor shells. The VMs can be generic, but in this work there is

a focus on JavaScript and Lua. The framework provides augmented virtuality, i.e., a coupling of

physical and virtual worlds.

Keywords: Virtualisation; Virtual Machines; Distributed Data Processing; sensor networks; Inter-

net of Things; Network Simulation; augmented virtuality

1. Introduction

The introduction should briefly place the study in a broad context and define the

purpose of the work and its significance.

For papers that report original research, you should use the titles “Materials and

Methods”, “Results”, “Discussion” and “Conclusions” (optional).

1. Introduction

Virtual network computing has its origins long ago in teleoperation [1]. The aim of

virtual network computing is the split of application software and hardware. But com-

munication was commonly limited to pure data exchange and well-defined Remote

Procedure Calls (RPC) that could be requested by a thin client on a remote server. There

are client processes and server processes that provide an operational service. Virtual

networking itself is basically a mapping of physical communication graphs onto logical

ones. The Internet is a prominent example, especially concerning IPv6 protocols that hide

the physical location of computers. In [2], network virtualization has been proposed as a

Citation: Bosse, S. VNetOS:

Virtualised Distributed and Parallel

Sensor Network Operating

Environment for the IoT and SHM.

Eng. Proc. 2022, 4, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Stefano Mariani

Published: 1 November 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 8

promising way to overcome the current limitations of the Internet by allowing multiple

heterogeneous virtual networks (VNs) to coexist on a shared infrastructure. Studying

distributed algorithms and monitoring and evaluating distributed systems is still a chal-

lenge, especially in education. The Web browser is today’s expressive and powerful

software to create network applications (Laboratory in the Web browser [3]) without the

requirement of software installation and dependency conflicts.

Simulation of communication on different levels plays an important role in the de-

velopment and evaluation of distributed algorithms, protocols, systems, and hardware

components. Hardware-in-the-loop simulations couple simulated processes and devices

with real devices. Examples include ns2 and ns3, as well as more recent frameworks such

as Jist, a Java-based simulator, and SimPy, a Python-based simulator [4]. These simula-

tors perform an abstraction of processes and devices.

In this work, Virtual Machines (VM) can be deployed everywhere and connected

with a Web browser-based network control software framework. Additionally, most of

the VMs can be processed in the Web browser software, too, either directly (any JavaS-

cript-based VMs) or by using VM-in-VM implementations (like for Lua). The VNetOS is

the software layer that provides operations and the components to merge internally and

externally deployed VM instances. VM instances are processed in worker processes (ei-

ther WebWorker, threads, or system processes) and can be accessed and controlled by the

unified Network Management Protocol (NMP), supporting Web browsers, too. The Vir-

tual Network Operating System (VNetOS) is a collection of protocols and software

modules that enable the design and evaluation of large-scale heterogeneous computer

networks with an easy-to-use and powerful GUI processed in the Web browser. Appli-

cations of the software framework are education, simulation, and real-world system

control of embedded system networks. The next sections introduce the principle network

and communication architecture, the software framework, a customized multi-computer

based on a 5$ tiny embedded system directly controllable and programmable via the

Web browser, and an evaluation.

2. Network Architecture

The general architecture consists of a generic network graph G = 〈N,P,C〉 with VM

nodes N that can process a textual programming language L, a set of communication

ports P attached to nodes, and communication connections (links) L between ports. Ja-

vaScript, e.g., can be processed directly in the Web browser or by an external VM like

node.js. Each VM vm typically supports one control path γ and is executed in a dedicated

worker thread or process. New VM instances can be created at run-time from a root node.

External VM instances can be controlled by JSON-based Web Remote Procedure Call

(RPC) services that can be accessed via HTTP, HTTPS, WebSocket (WS), or WSS IP pro-

tocols from the browser or other nodes. HTTP and WS without certificate-based security

level are relevant for embedded systems since certificate management is not suitable for

embedded systems. Instead, key-based encryption can be used for secure communica-

tion. Additionally, a worker that was forked from a root node can be controlled via the

root node too, e.g., in the case the worker hangs in an endless loop. Because most VMs are

strictly single-threaded, they cannot handle IO requests (such as signals or worker ter-

mination) and computation at the same time (at least not at a high level).

Firstly, three different VMs are considered in this work:

1. JavaScript (using V8/Spidermonkey/jerryscript [7] engines);

2. Lua (C-Lua, eLua, LuaJit [8], Fengari Web/VM-in-VM [6]);

3. JavaScript Agent Machine (JAM, programmed in JS, VM-in-VM, [5]).

Secondly, three different host computers are considered:

1. Generic desktop and mobile laptop computers (x86,x64, 2 cores, 2GHz clock) sup-

porting all VMs;

Eng. Proc. 2022, 4, x FOR PEER REVIEW 3 of 8

2. Embedded system Raspberry PI (Zero, 3, Arm, 1-2 cores, 1GHz clock) supporting all

VMs;

3. Tiny embedded system ESP32 (Tensilica, 2 cores, 240MHz clock) supporting Lua

primarily and JS VMs secondarily.

A node provides control and generic communication ports for JSON-based RPC

communication. Worker instances can access the node’s communication port via a mul-

tiplexer. Each worker instance provides a control port, too. Internal nodes are connected

via virtual connection links (VC) handled by the JS main loop. External nodes provide

IP-based communication ports. All link pair combinations are possible: Internal-internal,

internal-external, and external-external.

Arbitrary network topologies can be created, including star and mesh grids, typi-

cally using generic IP-based protocols like HTTP or WebSockets (WS). The use of secured

(SSL) connections is difficult due to certificate provision on each node, but it is fully

supported. The graphical front-end (or any script-based network configuration) connects

the nodes automatically (if the nodes are reachable).

There are two classes of VMs used in this framework:

1. A root meta VM that is the main process providing a Web RPC API to create and

control worker processes;

2. The real target VM (JS, Lua, FORTH, …) that is executed in a worker process,

providing an RPC service (especially for IO), too.

Although, class A can execute the target programming language, too, only worker

VMs are used for code processing. The main process as well as the worker processes ex-

ecute their own VM instance. A worker can be an isolated operating system process

(primarily in the case of JS and JAM) or a lightweight thread process (Lua). In both cases,

socket-based communication channels and shared memory are used for inter-VM com-

munication. The main VM is responsible for creating and controlling worker instances

via NMP described in the next section. Remotely created workers live until they are ex-

plicitly terminated by the remote side or if the NMP connection of the remote side is

dead.

Each node provides generic communication ports (aside from the RPC control ser-

vice) that can be used by user programs to communicate between nodes. The communi-

cation ports can be linked ad hoc and provide JSON-based channels. Each port provides

an IP port listener, except in the case of internal Web browser nodes, discussed in the

software framework section.

3. Software Framework

The VNetOS software framework consists of the following parts:

1. The Web browser GUI application with a 2D graphical network world consisting of

graphical node entities with communication links between nodes, code editors with

syntax highlighting, process monitor and interactive shell windows, and external

node controllers;

2. Internal VMs that can be embedded in the Web browser, i.e., can be provided in

JavaScript or WebAssembly;

3. External VMs with a Web RPC service that have virtual shadow nodes in the Web

GUI;

4. A set of programming modules supporting parallel and distributed programming

(like CSP modelling, sensor access, RPC; for each target VM language there is an

implementation).

The general architecture is shown in Figure 1a with internal and external VMs, and

generic communication links. The embedding of VMs in the Web browser is used for the

simulation of networks, optionally connected with external nodes, or as part of the

Eng. Proc. 2022, 4, x FOR PEER REVIEW 4 of 8

computational network, providing a coupling of phyiscal and virtual worlds (virtual

augmentation). Some VMs like Lua or Python require VM-in-VM implementations.

A target VM is always processed in a forked worker process. All worker processes

with independent VM instances communicate via (socket-based) channels with the main

process.

Communication between the Web controller and external nodes is established via

the Network Management Protocol (NMP). NMP is session-based (but loosely coupled

with the reconnect feature without losing state) and enables input and output redirection

and worker process control. Each virtual representation of an external node in the Web

GUI uses NMP to access external nodes and to create new VM instances (or agents in the

case of JAM) and communication ports. NMP communication (e.g., polling for standard

output and error streams from the VM) is event-based and dynamic to reduce the com-

munication costs (which can be significant if the Web browser application is connected to

hundreds of external nodes).

Generic data communication ports on external nodes as well as communication

links between ports can be created via the Web browser application via NMP, too. A

communication port on an external node with full network API (processed, e.g., by

node.js) creates an IP listener that receives messages from other nodes. Internal nodes in

Web browser workers cannot provide a listening port, but they can be connected to ex-

ternal nodes via push-pull communication (or by using bidirectional WebSockets), which

is established from the browser side. Forwarding messages from internal to external

nodes uses direct network requests, receiving messages from remote ports uses

time-limited blocking network requests that are completed if there are messages for the

browser port endpoint (except for WebSocket communication). WebSocket communica-

tion introduces a significant code overhead for HTTP(S) upgrades that are not available

or suitable for tiny embedded systems. Therefore, HTTP(S) is primarily used. Commu-

nication between external nodes can use UDP/TCP ports, too. All VM worker instances

created by the same root VM share communication ports. Each communication port is a

local message multiplexer (CMUX), too, and messages sent from workers via a commu-

nication port are passed to the root VM process, which forwards the message to all reg-

istered connections and all other attached VM worker instances (see Figure 1b). De-

pending on the underlying process model (threads versa system processes), the for-

warding process (from worker to multiplexer and vice versa) can produce a significant

extra overhead, as shown in the experimental section. The CMUX also implements

IP-port forwarding between different nodes, including Web browser node communica-

tion. Each VM worker instance provides a port set mirror of the node’s port set. If a port

is accessed within a VM worker, the access is routed up to the parent VM and the mes-

sage multiplexer (see Figure 1b).

The 2D graphical world is a virtual view of the physical VM network and consists

basically of graphical nodes (rectangles) associated with either internal or external VM

nodes, e.g., a computer with a specific IP address. Each node representation is organised

into slices. Each slice is assigned to a VM instance forked from the root node. Internal and

external associations provide nearly the same operational set: Adding or removing code

editors, creating worker instances with IO monitors, and interactive shells with IO mon-

itoring. Finally, generic communication ports and links between ports can be added. The

entire graphical network representation, including code, can be saved and loaded in

JSON format. Links can be established between internal nodes (using virtual channels),

between internal and external nodes, and between external nodes. Ports and links are

controlled on remote nodes via NMP. NMP is a lightweight protocol using generic IP

communication (HTTP, e.g.,) that can be implemented even on low-resource embedded

systems.

Besides computational nodes, there are synthetic sensors and generic data sources

that can be attached to internal nodes. These sensors inject data at specific time points or

upon defined events. The data is either computed by an analytical function or consists of

Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 8

pre-recorded data. A Monte Carlo simulation can be applied to introduce noise and

sensor model variances.

Figure 1. (a) General software framework and communication architecture with internal (double

outline), external mapper (single outline), and external (dashed line) nodes. There are management

communication ports (mPort) for connecting Web controllers with external nodes and generic

communication ports (cPort) for inter-node communication (b) Message multiplexer architecture.

To summarise, these different node classes are distinguished:

I-Node. Internal node with an embedded meta VM processed by the browser JS VM.

P-Node. External node processed by a native VM.

V-Node. Virtual wrapper (twin) of a p-node in the Web browser with NMP access and

control.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 6 of 8

4. Multicomputer Platform

Besides generic computers, embedded systems play an important role in the inves-

tigation and education of heterogeneous networks, including the Internet-of-Thing do-

main. One of the embedded devices is the raspberry PI Zero microcomputer. It is running

with a full operating system (Linux Raspberry OS) and network protocol stack, but it is

mostly still a generic computer. One scale level down, the tiny embedded ESP32 com-

puter is used. An ESP32 provides 512 kB RAM and 16 MB ROM with two Tensilica 32-bit

processor cores. This is a pure application-specific device without an initial operating

system and process shells.

Furthermore, single embedded systems connected by VNetOS provide only loosely

coupled distributed communication. Parallel computation can be exploited by multicore

or multi-computer devices. To study distributed-parallel (clustered) computation, a

multi-computer was designed with a set of ESP32 tiny embedded devices. The network

control of each single ESP32 computer by the Web browser application is performed via

WLAN/WiFi by the Web application, but the interconnect of the computers is realized by

high-speed serial links on the development board, shown in Figure 2. An ESP32 has two

freely usable UART devices with DMA capabilities and a maximal bit-rate of 5Mb/s. All

ESP32 devices are connected to a central multi-port and parallel network switch imple-

mented with a FPGA. Device-to-devices communication is handled by the switch. To

increase the bandwidth and to lower the communication latency, two serial links for each

device are used in parallel, as shown in Figure 2.

Figure 2. (Left) Prototype of the distributed-parallel multicomputer with 8 embedded ESP32 nodes

and an FPGA-based internal network switch (Right) VNetOS GUI representation of the network

(green box: editor, black rombus: VM instance monitor)

Each device implements parts of the FreeRTOS operating system in a pure func-

tional API including WLAN/WiFi layers, serial communication, multi-threading, the

node-level communication layer, and Lua VMs. Each Lua VM is processed in its own

worker thread. The Lua VM (native C version, eLua) is booted with the required Web

RPC service using NMP. The Web browser application can directly create and control

Lua VMs on each device. Any logical device interconnection network structure created

on the Web or by a host application can be selected by the FPGA network switch (full

N:N multiplexer with queuing). The ESP32 devices are programmed via the Arduino IDE

with code transfer via USB. The programming of each node is only required once. The

user code is passed to and started on the VMs via the Web browser controller.

5. Preliminary Experiments and Results

Three principle experiments were performed:

1. Network of 16/8 internal nodes arranged in a 2D mesh-grid;

2. Network of 16/8 external nodes arranged in a 2D mesh-grid;

Eng. Proc. 2022, 4, x FOR PEER REVIEW 7 of 8

3. Hybrid 8 internal + 8 external nodes.

An example configuration is shown in Figure 3 with four internal and two external

nodes (Raspberry PI Zero) connected via WLAN. For each VM instance there is a code

editor and an IO monitor shell window. Internal and external nodes can communicate

directly via HTTP.

Figure 3. Typical network application using VNetOS, a Web browser, and two external Raspberry

PI devices.

Each experiment was carried out with JS and Lua VMs. The Lua VM, either Fengari

Lua VM for Web browser or the Parallel Luajit VM (plvm), and JAM VMs are extensively

used in education and lecture courses (bachelor and master courses). The evaluation of

lectures with student exercises of both VMs and the VNetOS (and some predecessors like

LuaNetOS and the JAM laboratory) showed a steep learning curve, and even students

with low programming skills were able to program and evaluate distributed systems.

A dhrystone benchmark was performed for each target VM for normalized com-

parison. Performance results are shown in Table 1, which depends on the VM imple-

mentation, regarding both VM forking and messaging times between two nodes, tiVM and

tcmsg, respectively. Lua can be easily embedded and forked using multi-threading,

whereas node.js requires system process creation (at least some time ago), resulting in a

instance creation time 100 times higher. Communication time is limited due to core

bandwidth/latency and by the process/thread scheduling times required for message

multiplexer invocation. Lua (LuaJit) shows superior performance compared to

node.js/V8-based VMs and is a suitable VM for (tiny) embedded systems. The base

memory requirement for each VM instance miVM is another important parameter, as

shown in Table 1. Node.js (and Web browser engines) pose the highest start-up times and

memory requirements, but also the highest computational power.

Table 1. Selected experimental results of VM performance (dhrystones measured by the VM).

Host dhry/s VM tiVM miVM tcmsg

PC/nodejs 5000 k JS (ext) 140 ms 20 MB 3 ms

PC/Firefox 4200 k JS (int) 100 ms 10 MB 4 ms

PC/plvm 600 k Lua, Parallel LuaJit(+libuv) (ext) 3 ms 800 kB 0.1 ms

Eng. Proc. 2022, 4, x FOR PEER REVIEW 8 of 8

Host dhry/s VM tiVM miVM tcmsg

Raspberry PI Zero/nodejs 230 k JS 1600 ms 20 MB 40 ms

Raspberry PI Zero/plvm 40 k Lua, Parallel LuaJit(+libuv) (ext) 10 ms 800 kB 1 ms

ESP32/Lua 1 k Lua, FreeRTOS (ext) 100 ms 100 kB 5 ms

6. Conclusions

A novel distributed virtualization framework for the deployment and control of

heterogeneous networks of generic and embedded systems was introduced. The control

of the distributed network is performed by a graphical Web browser application (or al-

ternatively, script-based). Via the Web application, each node can be controlled by the

NMP protocol. Each physical node has a virtual representation in the Web application (or

any other script-based control software). The physical and virtual nodes are connected

via NMP. Each root node supports a programmable target VM (e.g., JS, Lua) and can in-

stantiate (fork) VM worker processes. VM instances can be connected with each other by

using generic communication ports. The routing of messages is performed by a message

router. Evaluation of the node performance identified VM forking and message routing

times as critical, but strongly dependent on the underlying VM (LuaJit forking is 100

times faster than node.js). Even tiny embedded systems can be used for distributed pro-

gramming and processing. Besides education, simulation and generic distributed net-

work control are core applications.

Funding: This research was funded by DFG, grant number XXX.

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement:

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Richardson, T.; Stafford-Fraser, Q.; Wood, K.R.; Hopper, A. Virtual network computing. IEEE Internet Comput. 1998, 2, 33–38.

2. Chowdhury, N.M.K.; Rahman, M.R.; Boutaba, R. Virtual network embedding with coordinated node and link mapping. In

Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19-25 April 2009; pp. 783–791.

3. Bosse, S. PSciLab: An Unified Distributed and Parallel Software Framework for Data Analysis, Simulation and Machine

Learning—Design Practice, Software Architecture, and User Experience. Appl. Sci. 2022, 12, 2887.

https://doi.org/10.3390/app12062887.

4. Lessmann, J.; Janacik, P.; Lachev, L.; Orfanus, D. Comparative study of wireless network simulators. In Seventh International

Conference on Networking (icn 2008), Cancun, Mexico, 13–18 April 2008; pp. 517–523

5. Bosse, S.; Engel, U. Augmented Virtual Reality: Combining Crowd Sensing and Social Data Mining with Large-Scale Simula-

tion Using Mobile Agents for Future Smart Cities. Proceedings 2019, 4, 49. In Proceedings of the ECSA-5 5th International Elec-

tronic Conference on Sensors and Applications, 15–30 November 2018. https://doi.org/10.3390/ecsa-5-05762.

6. Available online: https://github.com/fengari-lua/fengari (accessed on 1 June 2022).

7. Available online: https://github.com/jerryscript-project/jerryscript (accessed on 1 June 2022).

8. Available online: https://luajit.org (accessed on 1 June 2022).

