

2-Styrylchromones modulate prostaglandins production through the inhibition of COX-2

Mariana Lucas^{a*}, Marisa Freitas^a, Artur M.S. Silva^b, Eduarda Fernandes^a, Daniela Ribeiro^{a, c}

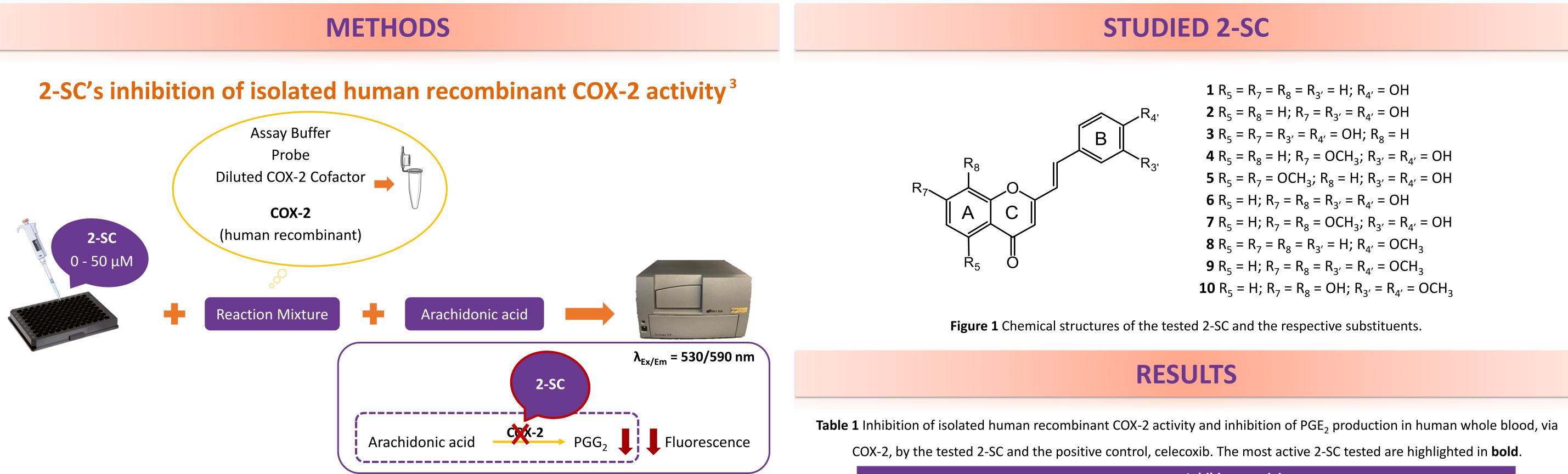
^a LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal. ^b LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal ^c Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042 Angra do Heroísmo, Açores, Portugal. * email: up201912326@edu.ff.up.pt

INTRODUCTION

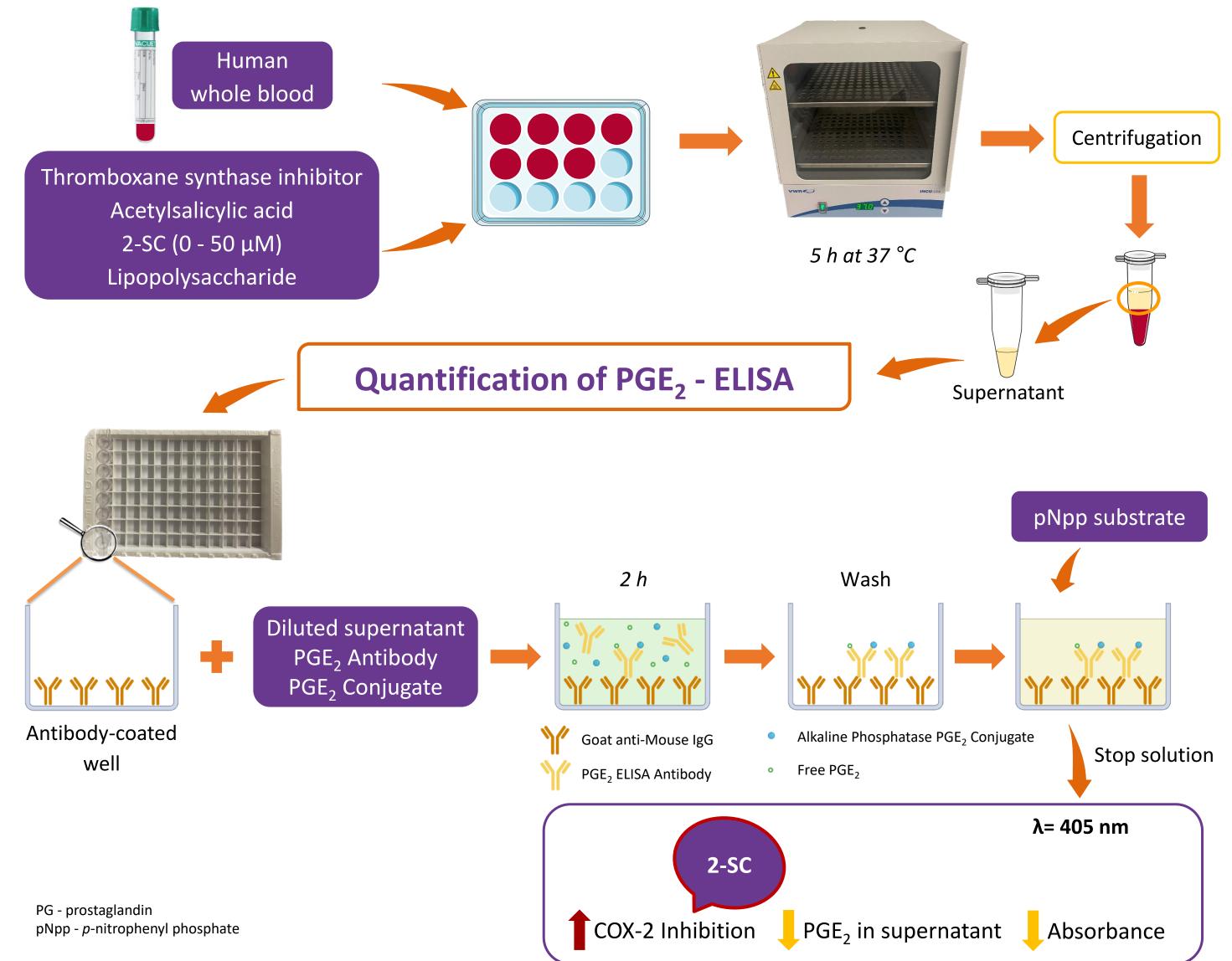
Cyclooxygenases (COX) are the enzymes responsible for the synthesis of prostanoids, namely prostaglandins (PG), through the conversion of arachidonic acid into PG. COX have two

isoforms, COX-1 and COX-2, and the latter is the inducible one, which is triggered by inflammatory mediators, such as growth factors and cytokines. COX-2 plays an important role in the

development and maintenance of the inflammatory state¹. Therefore, the regulation of the inflammatory response and symptoms is influenced by the modulation of COX-2 activity.


2-Styrylchromones (2-SC) are heterocyclic compounds, with a styryl group attached to the C-2 of their chromone structure. Most of the know compounds in this group are of synthetic

origin and have demonstrated several bioactive properties, including anti-inflammatory. Although their anti-inflammatory potential is recognized, their mechanisms of action still need to be


deeply explored ².

Aim: Evaluate the inhibitory activity of ten hydroxylated and methoxylated 2-SC (Figure 1) against COX-2 by

fluorometric *in vitro* detection of PGG, and colorimetric *ex vivo* detection of PGE, production.

2-SC's inhibition of PGE₂ production in human whole blood⁴

2-SC	Inhibitory activity (% ± SEM)* or IC ₅₀ (μM, mean ± SEM)	
	$(\% \pm SE(V))^{+} \text{ Or IC}_{50}$ Inhibition of human recombinant COX-2	Inhibition of PGE ₂ production, via COX-2
1	51 ± 4 % ^{50 µM}	57 ± 5 % ^{50 μΜ}
2	1.5 ± 0.2	ΝΑ ^{50 μΜ}
3	1.7 ± 0.2	47 ± 6 % ^{50 μM}
4	2.0 ± 0.3	NA ^{25 μM}
5	1.8 ± 0.1	NA ^{25 μM}
6	0.36 ± 0.07	NA ^{50 μM}
7	0.9 ± 0.1	NA ^{50 μM}
8	ΝΑ ^{50 μΜ}	18 ± 1
9	ΝΑ ^{50 μΜ}	NA ^{25 μM}
10	1.9 ± 0.3	NA ^{50 μM}
Positive control		
Celecoxib	0.23 ± 0.04	0.98 ± 0.04

* The percentage of inhibition is expressed for the highest tested concentration (in superscript) that could be tested under the assay conditions to avoid interferences with the methodology (n≥3). SEM - standard error of the mean. NA - No activity found, up to the highest tested concentration (in superscript).

CONCLUSIONS

The 2-SC **6** was the most active in the inhibition of isolated human recombinant COX-2.

The 2-SC **8** was the most active in the inhibition of PGE_2 production.

The presence of OH groups, namely at C-8 on A-ring, seems to be essential for the

References

direct inhibition of COX-2.

The presence of a OCH $_3$ at C-4' on B-ring seems to be important for the inhibition of

PGE₂ production, in human whole blood.

Acknowledgements

1. Ribeiro, D., Marisa, F., Lima, J.L.F.C., Fernandes, E. *Med. Res. Rev.* 2015, 35 (5), 877-936. 2. Lucas, M., Freitas, M., Silva, A., Fernandes, E., Ribeiro, D. Oxid. Med. Cell. Longev. 2021, 2021, 2804521 3. Biovision COX-2 inhibitor screening kit (Fluorometric) (catalog No: K547-100). https://www.biovision.com/documentation/datasheets/K547.pdf (29 June 2022). 4. Ribeiro, D., Proença, C., Varela, C., Janela, J., Silva, E.J.T., Fernandes, E., Roleira, F.M.F., *Bioorg. Chem. 2019*, 91, 103179.

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the projects UIDB/50006/2020 and UIDP/50006/2020, and from the European Union (FEDER funds through COMPETE2020 POCI-01-0145-FEDER-029253-Project PTDC/MED-QUI/29253/2017). ML thanks FCT/MCTES and ESF (European Social Fund) through NORTE 2020 (Programa Operacional Região Norte) for her PhD grant ref. 2021.06746.BD). MF acknowledges her contract under the CEEC Individual (2020.04126.CEECIND/CP1596/CT0006) and thanks LAQV/REQUIMTE for her contract under the reference LA/P/0008/2020.

