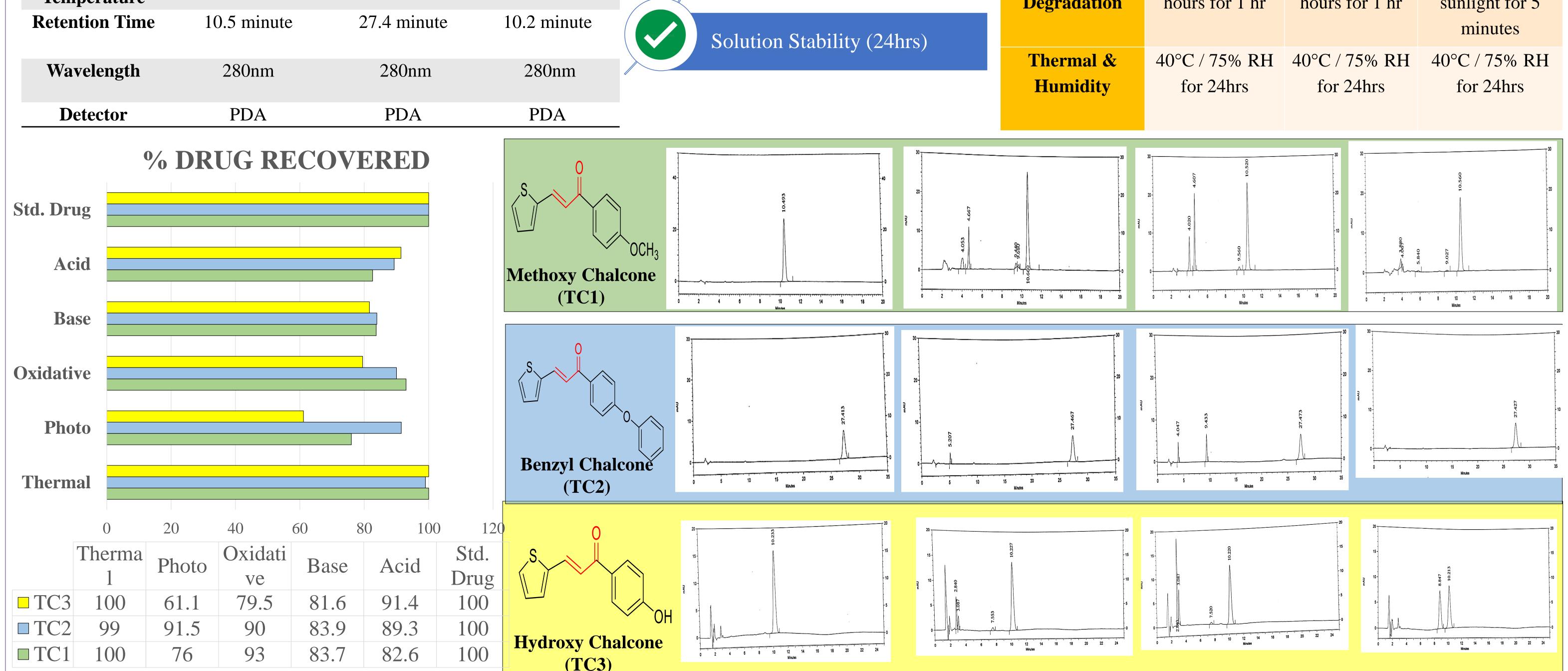

FORCED DEGRADATION STUDIES ON AGENTS OF THERAPEUTIC INTEREST

Ms. Nikita Pise, Dr. Radhika Raheja, Dr. Arati Prabhu

SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India

ABSTRACT

Chalcones possessing potential anti Alzheimer's activity were synthesised in our lab using the Claisen Schmidt reaction. FDS protocols in accordance with ICH guidelines were applied to three thiophene chalcones TC1, TC2, TC3. HPLC method was developed and validated for the individual untreated molecules and was found to be specific, selective, precise, reproducible, robust and linear in the range of about 5-15 ppm of the working standard concentration. The chalcones were stable under thermal and thermal-humidity stress, but degraded to different extents under acid-and base-catalysed hydrolysis, oxidative stress and photolytic conditions, as seen by HPLC analysis.


by LC-MS for TC1

This project aims to study the degradation potential of three promising thiophene-phenyl chalcones in accordance to protocols given as guidelines under ICH

Method Development

Optimized FDS Conditions

	Methoxy Chalcone			Method Validation	Conditions	Methoxy	Benzyl	Hydroxy	
c conditions:	(TC1)	(TC2)	Chalcone (TC3)			Chalcone(TC1)	Chalcone(TC2)	Chalcone(TC3)	
HPLC System	Agilent 1260 infinity	e	Agilent 1260		Base	0.1N NaOH at	0.1N NaOH at	1N NaOH at	
		infinity	infinity	Selective					
Column	Thermo Scientific	Thermo Scientific	Cyno column		Degradation	100°C for 10min		100°C for 30min	
	C18 (250 x 4.6, 5µ)	C18 (250 x 4.6,	(150 x 4.5, 5µ)				10min		
		5µ)		Linear (Range of 5-15	Acid	10N HCl at	1N HCl at	10N HCl at	
Mobile Phase	ACN : Sodium	ACN : Sodium	ACN : Sodium	ppm)	Degradation	100°C for 2 hrs	100°C for 1hr	100°C for 1hr	
	acetate buffer pH 3	acetate buffer pH	acetate buffer pH						
	(60:40)	3 (60:40)	3 (25:75)	Precise (System	Oxidative	$30\% H_2O_2$ at	$30\% H_2O_2$ at	$3\% H_2O_2$ at	
				precision & Method				2 2	
Flow rate	1.0 ml/min	1.0 ml/min	1.0 ml/min	precision)	Degradation	100°C for 15min	100°C for	100°C for 15min	
Injection vol.	20µ1	20µ1	20µ1				15min		
Diluent	Methanol	Methanol	Methanol: Water	Robust (wavelength of ± 2	Thermal	85°C for 24hrs	85°C for 24hrs	85°C for 24hrs	
			(80:20)	nm, the mobile phase	Degradation				
Column	25° C	25° C	25° C	composition of $\pm 2\%$ and flow rate of ± 0.1 mL/min)	Photo	1.2 million Lux	1.2 million Lux	Expose to	
Temperature					Degradation	hours for 1 hr	hours for 1 hr	sunlight for 5	

CONCLUSION

FDS protocols in accordance with ICH guidelines were applied to three thiophene chalcones under five forced degradation conditions. The chalcones were stable under thermal and thermal-humidity stress, but degraded to different extents under acid-and base-catalysed hydrolysis, oxidative stress and photolytic conditions. and results obtained for the analytical method validation for the determination of the three chalcones were found to be specific, selective, precise, reproducible, robust and linear in the range of about 5-15 ppm of the working standard concentration.

REFERENCES

1] N. B. (2017) C. derivatives: promising starting points for drug design. M. 2017 22:1210 Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH. 2] M. Blessy, R. D. Patel, P. N. Prajapati, and Y. K. Agrawal, "Development of forced degradation and stability indicating studies of drugs - A review," J. Pharm. Anal., vol. 4, no. 3, pp. 159–165, 2014, doi: 10.1016/j.jpha.2013.09.003.

ECMC 2022

The 8th International Electronic **Conference on Medicinal Chemistry** 01-30 NOVEMBER 2022 ONLINE