# **Green exfoliation of graphene;**

# an *in vitro* study of toxicity and biocompatibility

Eirini Papanikolaou<sup>1,2</sup>, Yannis V. Simos<sup>1,3</sup>, Konstantinos Spyrou<sup>3,4</sup>, Michaela Patila<sup>3,5</sup>, Christina Alatzoglou<sup>5</sup>, Patra Vezyraki<sup>1</sup>, Konstantinos Tsamis<sup>1,2</sup>, Dimitrios Gournis<sup>3,4</sup>, Haralambos Stamatis<sup>3,5</sup>, Dimitrios Peschos<sup>1,2</sup>, Evangelia Dounousi<sup>2</sup>

## INTRODUCTION

Due to their unique physicochemical properties, the use of graphene-based nanomaterials in biomedical applications has attracted great interest over the last decade. Recently, several green exfoliation methods have emerged as more economical and environmentally friendly approaches for producing graphene from graphite. The aim of this study was to evaluate the toxicity and biocompatibility of graphene that has been synthesized either with chemical (Chemical graphene) or green procedures (Biographene).

### **METHODS**

Cytotoxicity of the two compounds was assessed in vitro in human THP-1-derived macrophages with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) Examination of the redox stage of the cells with ROS- DCFDA assay, as well as evaluation of apoptosis and cell cycle analysis, were performed using Flow cytometry.

# RESULTS



#### **CELL VIABILITY**



In both nanomaterials, toxicity was dose- dependent rather than time- dependent. **Chemical graphene's exfoliation requires the use of toxic solvent DMF, and thus its** toxicity assessment was limited to low doses ( $\leq 20 \mu g/mL$ ). At these doses both nanomaterials weren't cytotoxic, however Biographene's lack of chemicals make it biocompatible even at 10x higher doses ( $200 \mu g/mL$ ).





None of the two nanomaterials seemed to induce oxidative stress in THP-1 cells, as neither of them generated intracellular reactive oxygen species (ROS) at the doses of <u>10</u> and of <u>20  $\mu$ g/mL</u> after 24h of treatment.





**Biographene and Chemical graphene** Both induced a mild increase of apoptosis in THP-1 cells at doses of 20 and 50  $\mu$ g/mL, compared to untreated cells. Elevation in the apoptotic cell population wasn't dose-dependent and was about 5-7%. At these doses, both nanomaterials didn't induce cell necrosis.

At the dose of 20 µg/mL none of the nanomaterials induced cell cycle arrest at G0/G1 or G2/M phase. This result suggested that no damage in DNA or microtubules occurred after treatment of THP-1 with the two compounds.

#### CONCLUSION

Although both materials seem to be safe at low doses, green exfoliated- graphene- Biographene could be used at higher doses. Moreover, it's sustainable and economical way of production make it an ideal candidate for biomedical applications (i.e., biosensing, drug delivery etc.). Further research on the activation of molecular pathways of inflammation by Biographene could prove its value for use in such applications

#### **BIBLIOGRAPHY**

1. Papanikolaou E, Simos YV, Spyrou K, Tzianni EI, Vezyraki P, Tsamis K, Patila M, Tigas S, Prodromidis MI, Gournis DP, Stamatis H, Peschos D, Dounousi E. Is graphene the rock upon which new-era continuous glucose monitors could be built? Exp. Biology and Medicine. In press (October 2022)

2. Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci. 2021 Jan; 16(1):62-76. 3. Riman D, Spyrou K, Karantzalis AE, Hrbac J, Prodromidis MI. Glucose sensing on graphite screen-print electrode modified by sparking of copper nickel alloys. Talanta. 2017 Apr;165:466-473.



European Regional

Development Fund

HELLENIC REPUBLIC MINISTRY OF DEVELOPMENT AND INVESTMENTS SPECIAL SECRETARIAT FOR ERDF & CF PROGRAMMES MANAGING AUTHORITY OF EPAnEK

**EPANEK** 2014–2020 **OPERATIONAL PROGRAMME** COMPETITIVENESS ENTREPRENEURSHIP INNOVATION



This research was co- funded by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program of Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T2EDK- 02171)



NNRgUOI

Co-financed by Greece and the European Union



The 8th International Electronic **Conference on Medicinal Chemistry** 01-30 NOVEMBER 2022 | ONLINE