

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01-30 NOVEMBER 2022 | ONLINE

Chaired by **DR. ALFREDO BERZAL-HERRANZ;** Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Design of new derivatives of dimedone molecules using QSAR and Docking molecular

<u>Presented by :</u> <u>Ms. Khaoula MKHAYAR</u>

pharmaceuticals

MDPI

<u>Under the guidance of:</u> <u>Pr. Souad ELKHATTABI</u>

Engineering, Systems and Applications Laboratory (LISA) National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez

21-09-2022 / FST

Introduction

2

3

4

1

Generality of 2D-QSAR study and Molecular Docking studies

Simulation Results

Conclusion

1-Introduction

The pharmaceutical industry is oriented towards new research methods based on molecular modeling, which permit to predict the biological activity and pharmacokinetics of compounds before synthesis Cancer is considered the leading cause of death worldwide

(NSCLC) accounts for 85% of lung cancers

cyclohexene 1,3 dione series *

2- 2D-QSAR and Molecular Docking studies

2-2D QSAR and Molecular Docking studies

Table1: Coefficient values of QSAR models

	Pa	rameters	<	MLR	MNLR	ANN	
ini		R		0,95	0,995	0,994	
lrai 16		R ²		0,91	0,991	0,99	
		R ² _{cv}		0,85	0,82	0,989	
		MCE		0,004	0,001	4,7 10^-4	
st		R		0,966	0,9984	0,976	
te		R ² test		0,934	0,997	0,954	
		MCE		3,5 10^-4	2,6 10^-4	1,4 10^-4	

Figure1: Williams graph of the leverage-standardized residue for the pIC50 MLR model (with h = 0.416 and residual limits = ±2.5).

Figure 2: 2D -3D representation of the interactions between the active sites of 6SD9 and ligand 2

Figure 3: 2D -3D representation of the interactions between the active sites of 6SD9 and ligand 13

3-Simulation Results

>Evaluation of drug-likeness properties

Table 3. Drug-like evaluation of the proposed molecules.

En	ntr	ABS	TPSA(A²)	n-ROTB	MW	LogP	n-OHN acceptors	n-OHNH donors	Lipinski's violations	Veber Violations	Egan Violation	S.A
R	ule	-	<140	<10	<500	<=5	<10	<5	<=1	<=1	<=1	0 <s.a<10< th=""></s.a<10<>
)	X2	High	109,07	2	363,41	2,72	4	3	Yes	Yes	Yes	4.2
X	(13	High	83,05	2	362,42	1,75	4	2	Yes	Yes	Yes	4,22

ABS: Absorption, TPSA: Topological Polar Surface Area, n-ROTB: Number of Rotatable Bonds, MW: Molecular Weight, Log P: logarithm of partition coefficient of compound between n-octanol and water, n-ONHN acceptors: Number of hydrogen bond acceptors, n-OHNH donors: Number of hydrogen bonds donors, S.A: Synthetic accessibility.

Table4: Predicted ADMET properties of the designed compounds

	Model	Unit	Predictive values				
	-		Foretinib	Ligand 2	I igand 13		
Absorption	Intestinal (hum absorption	an) Numeric (% Absorbed)	95,561	78,809	83,42		
Distribution	VDss Unbound fract Permeability of BBB CNS permeabi	ion The Digital (Fu) Digital (Iog BB) Numeric (PS log)	0,549 0,346 -1,848 -3,502	0,54 0,227 -0,944 -2,374	0,649 0,118 -0,751 -0,051		
Metabolism	Substrate CYP2D6 CYP3A4 <u>Inhibitors</u> CYP1A2 CYP2C19 CYP2C9 CYP2C9 CYP2D6 CYP3A4	Category(yes/no)	Not Yes No No Yes No	No No No No No No	Yes Yes Yes Yes No Yes Yes		
Excretion	Total clearan	ce Digital (log mL min ⁻¹ kg ⁻¹)	1,048	0,779	0,819		
Topicity	AMSE toxi⊂	ity Category(yes/no)	No	Yes	No	14	

4-Conclusion

- In this work, we developed 2 models 2D QSAR for cyclohexene 1,3 dione derivatives series for non-small cell lung cancers.
- We have designed 16 molecules based on the molecule that has the highest biological activity.
- Among the 16 molecules designed, two molecules with high activities but a single molecule that respects the properties of drug likness and ADMET.
- This molecule '13' can be considered as a drug after conducting additional in vivo and in vitro investigations before the clinical trial procedure.

