

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

Silver(I) complexes with clinically used azoles: synthesis, structural characterization and antimicrobial evaluation

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Nevena Lj. Stevanović^{1*}, Jelena Lazić², Jakob Kljun³, Mia Stanković¹, Jasmina Nikodinovic-Runic², Iztok Turel³, Miloš I. Djuran⁴ and Biljana Đ. Glišić¹

¹University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia;

²University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia;

³University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia;

⁴Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

* Corresponding author: <u>nevena.stevanovic@pmf.kg.ac.rs</u>

University of Ljubljana Faculty of Chemistry and Chemical Technology

Silver(I) complexes with clinically used azoles: synthesis,

structural characterization and antimicrobial evaluation

ЕСМС 2022

Abstract:

Recently, we synthesized silver(I) complex with the antifungal agent itraconazole, which showed improved anti-Candida potential and therapeutic safety in comparison to itraconazole and rescued the zebrafish embryos of lethal *C. albicans* infection at safe doses.¹ Inspired by these results, in the present study, three new silver(I) complexes with clinically used azoles, econazole (ecz), clotrimazole (ctz) and voriconazole (vcz), $[Ag(ecz)_2]SbF_6$ (Ag1), $[Ag(ctz)_2]SbF_6$ (Ag2) and $\{[Ag(vcz)_2]SbF_6\}_n$ (Ag3) were synthesized and structurally characterized by elemental microanalysis, mass spectrometry, spectroscopy (¹H NMR, IR and UV-Vis), cyclic voltammetry, molar conductivity measurements and single crystal X-ray diffraction analysis.² The spectroscopic and crystallographic results revealed that, in the synthesized silver(I) complexes, azole ligands are monodentately coordinated to the Ag(I) ion through the nitrogen atom forming [Ag(azole)₂]⁺ complex cation. The antimicrobial effect of complexes and azole ligands was evaluated against different Candida species, as well as Grampositive and Gram-negative bacteria. The synthesized complexes Ag1 – 3 exhibited good to moderate antimicrobial activity being, in most cases, more active than the corresponding azole ligands. Complexes Ag2 and Ag3 also showed strong inhibitory activity against C. albicans biofilm formation and strong inhibition of *C. albicans* filamentation at subinhibitory concentrations.

Keywords: Silver(I) complexes; Antifungal azoles; Antimicrobials; Biofilms.

N. Lj. Stevanović, B. Đ. Glišić, S. Vojnovic, H. Wadepohl, T. P. Andrejević, S. Ž. Đurić, N. D. Savić, J. Nikodinovic-Runic, M. I. Djuran, A. Pavic, J. Mol. Struct. 1232 (2021) 130006.
N. Lj. Stevanović, J. Kljun, M. Stankovic, S. Skaro-Bogojevic, J. Lazic, I. Turel, M. I. Djuran, B. Đ. Glišić, Manuscript in preparation.

Introduction

- ✓ Fungal infections represent a serious problem for modern-day healthcare
- Antifungal agents inhibit the enzymes (cytochrome P450), included in the synthesis of ergosterol, which is a component of the fungal cell membrane
- Azoles are of particular importance as potent broad-spectrum agents used as first-line therapy for the treatment of many invasive fungal infections associated with significant morbidity and mortality worldwide

Clotrimazole (ctz)

Results and discussion

✓ Silver(I) complexes were synthesized according to the presented procedure

Structural characterization

✓ The synthesized complexes were characterized by elemental analysis, UV-Vis, IR and ¹H NMR spectroscopy, mass spectrometry and cyclic voltammetry, while their structure was determined by a single-crystal X-ray diffraction analysis

✓ The intensity and the position of the absorption maxima of Ag1 – 3 and the shape of spectra remained unmodified during the investigated time, being in accordance with the stability of these complexes in solution

Electrochemical characterization

✓ Cyclic voltammograms of complexes Ag1 – 3 recorded at the GC electrode in DMSO and 0.1 M tetrabutylammonium hexafluorophosphate (TBAHP) as a supporting electrolyte at a scan rate of 50 mV/s. The conditions are given as follows: $E_{begin} = -2.0 \text{ V}$, $E_{end} = 2.0 \text{ V}$ and $E_{step} = 0.002 \text{ V}$

Antimicrobial potential

Test organism:	C albiance	C. parapsilosis	C. krusei	C. glabrata	P. aerugonosa	E. coli	S. aureus	L. monocytogenes	MRC-5
Ligand/ Complex	C. albicans								
Econazole (ecz)	7.00	3.90	14.10	56.20	>500	>500	225	>500	10 ± 1.0
Clotrimazole (ctz)	2.60	10.2	1.40	9.10	>500	>500	290	>500	8.7 ± 0.4
Voriconazole (vcz)	35.80	0.30	1.40	572	>500	>500	>500	>500	859 ± 5.0
Ag1	2.25	2.25	27.10	11.29	22.6	11.30	2.70	22.60	10 ± 1.0
Ag2	0.12	0.01	0.03	0.97	12.10	12.10	2.61	12.10	16 ± 0.9
Ag3	0.48	0.01	0.01	0.06	11.90	23.90	47.90	47.90	36 ± 1.5

 Antimicrobial activity of silver(I) complexes and the corresponding azole expressed as MIC (μM) in comparison to their cytotoxicity against healthy human fibroblasts MRC-5 (IC₅₀, μM)

Filamentation test on C. albicans

✓ Filamentation of *C. albicans* ATCC 10231 in the presence of subinhibitory (0.5 × MIC value) concentrations of complexes Ag2 and Ag3

Inhibition of C. albicans biofilm formation

Compounds	Ag2	Ag3	ctz	VCZ
Biofilm formation inhibition [%]	86 ± 1.3	87 ± 0.4	$\textbf{79} \pm \textbf{3.9}$	62 ± 6.3

Inhibition of *P. aeruginosa* biofilm formation

Compounds	Ag2	Ag3	ctz	VCZ
Biofilm formation inhibition [%]	14 ± 1.4	3 ± 1.4	19 ± 1.1	4 ± 1.1

✓ Effect of complexes Ag2, Ag3 and azoles on biofilm formation of C. albicans and P. aeruginosa. Tested concentration for biofilm inhibition was 0.5 × MIC

Conclusions

- ✓ Three new silver(I) complexes with clinically used azoles, econazole (ecz), clotrimazole (ctz) and voriconazole (vcz), [Ag(ecz)₂]SbF₆ (Ag1), [Ag(ctz)₂]SbF₆ (Ag2) and {[Ag(vcz)₂]SbF₆}_n (Ag3) were synthesized and structurally characterized
- ✓ Azole ligands are coordinated to the Ag(I) ion through the nitrogen atom, leading to the formation of [Ag(azole)₂]⁺ complex cation
- ✓ The synthesized complexes Ag1 3 have shown good to moderate antimicrobial activity being, in most cases, more active than the corresponding azoles
- Two most active complexes, Ag2 and Ag3, have shown strong inhibitory activity against *C. albicans* biofilm formation and strong inhibition of *C. albicans* filamentation at subinhibitory concentrations

Acknowledgments

This research has been financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement No. 451-03-68/2022-14/200042 and 451-03-68/2022-14/200122), the Serbian Academy of Sciences and Arts (project F128) and the Slovenian Research Agency (grant P1-0175).

МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА

