

9th International Electronic Conference on Sensors and Applications





# Measurement of sugar concentration by multimodal fiber optics sensor

Nailea Mar-Abundis, Yadira Aracely Fuentes-Rubio, René Fernando Domínguez-Cruz and José Rafael Guzmán- Sepúlveda



01-15 November 2022 | Online



#### **Table of contents**

- Background & aim.
- Material and methods.
  - ➤ SMS sensor device.
  - > Sample preparation.
  - Experimental array.
- Results.
- Conclusions.

## Background





- The sugar: essential for human diet.
- Provides energy for different organs to perform correctly [1,2]
- However, is necessary to distinguish the amounts of sugars present in food.
- An excess of sugar consumption can lead to several health diseases [2].

- 1. Partearroyo, T.; Sánchez Campayo, E.; Varela Moreiras, G. Nutrición Hospitalaria 2013, 28, 40-47,
- 2. Cabezas Zabala, C.C.; Hernández Torres, B.C.; Vargas Zárate, M. Revista de la Facultad de Medicina 2016, 64, 319-329,

# Background

- Several methods are reported to measuring sugar concentrations
- Some of them often require complex manufacturing process or additional peripherical instrumentation.

## Aim

• Measuring sugar concentration in aqueous solutions using a fiber optics sensor based on multimodal interference (MMI) by SMS configuration.



#### **Materials and Methods**

#### SMS sensor device:



3. Soldano, L.B.; Pennings, E.C.M. *Journal of Lightwave Technology* **1995**, *13*, 615-627

![](_page_5_Picture_0.jpeg)

## **Materials and Methods**

#### Sample preparation:

• Water-sugar mixtures were prepared using deionized water (®Sigma Aldrich, 99% pure) and commercial brands of sucrose and fructose.

• The mixtures range: 0.5%v/v to 18.5%v/v with increments of 1.5%.

![](_page_5_Figure_5.jpeg)

![](_page_6_Picture_0.jpeg)

### **Materials and Methods**

![](_page_6_Figure_2.jpeg)

![](_page_7_Picture_0.jpeg)

#### Results

• The response of the fabricated sensor with sucrose and fructose dilutions.

![](_page_7_Figure_3.jpeg)

![](_page_8_Picture_0.jpeg)

#### Results

• The spectral shift wavelength peak  $\Delta\lambda$  as function of sugar concentration.

![](_page_8_Figure_3.jpeg)

The sensor exhibits a linear response with a sensitivity:

- 0.17524nm/% for sucrose
- 0.16321nm/% for fructose

#### Conclusions

- SMS sensor allows detecting different concentrations of sucrose and fructose in aqueous solutions.
- The sensor exhibits a linear response to sugar concentration (~ 0.17524 nm/% for sucrose and 0.16321nm/% for fructose).
- The sensor has a simple construction, low cost, and linear response. Do not require additional processes.
- Capable of performing real-time measurements and potential use as a quality control tool.

![](_page_10_Picture_0.jpeg)

9th International Electronic Conference on Sensors and Applications

![](_page_10_Picture_2.jpeg)

![](_page_10_Picture_3.jpeg)

# Thanks for your attention

01-15 November 2022 | Online

![](_page_10_Picture_6.jpeg)