New N-benzenesulfonylguanidine derivatives and their selective growth inhibition of human breast cancer cell line MCF-7 and colon carcinoma HCT-116

Aneta Pogorzelska¹, Jarosław Sławiński¹, Anna Kawiak²

¹Medical University of Gdansk, Faculty of Pharmacy, Department of Organic Chemistry ² Intercollegiate Faculty of Biotechnology UG-MUG, Department of Biotechnology

INTRODUCTION:

Benzenesulfonylguanidine derivatives have been shown as potent cytotoxic agents against different types of human cancer cells [1-3]. This important pharmacophore is widely studied in our research team as a basic scaffold for searching new anticancer agents. Here, we described the series of derivatives modified by (2-chloroacetyl)amino and 2-imino-4-oxothiazolidine-3-yl groups.

SYNTHESIS:

The designed derivatives were obtained by a two-step synthesis as was shown at the scheme below. The starting substrates were the appropriate 1-(2-alkylthio-4-chloro-5-methyl)benzenesulfonyl)-3-aminoguanidines 1-4 which were transformed into 1-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-3-[(2-chloroacetyl)amino]guanidines 5-8 by a reaction with chloroacetyl chloride. In the next step, the derivatives 5-8 were reacted with potassium thiocyanate yielding 1-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-3-(2-imino-4oxothiazolidine-3-yl)guanidines 9-12. The compounds 5-8 were obtained with good yields above 79%, while derivatives 9-12 with slightly worse yields about 14-49% after purification. The structures of the synthesized compounds 5-12 were confirmed by IR, ¹H NMR, and elemental analyses.

CYTOTOXIC ACTIVITY:

The synthesized derivatives 5-12 were evaluated in vitro by MTT assay for their activity against three human cancer cell lines: colon cancer HCT-116, breast cancer MCF-7, and cervical cancer HeLa. The activity against non-cancerous human epidermal keratinocyte line HaCaT was also examined. The data indicate that compounds 5-8 inhibit the growth of cancer cells stronger than derivatives 9-12. selective cytotoxic effect against HCT-116 cells was found for benzenesulfonylguanidine **6** containing The 2-(trifluoromethyl)benzylthio group at position 2 of benzenesulfonyl scaffold. The IC₅₀ value was 13 μ M, while IC₅₀ for HaCaT cells was 48 μM. Good selectivity was also observed for compound 7, with 2-chloromethylbenzylthio substituent, against HCT-116 and MCF-7 cells (IC₅₀ = 12 and 19 μ M, respectively for HCT-116 and MCF-7 cells, IC₅₀ = 47 μ M for HaCaT cells). Among compounds **9-12**, only compound **9** showed moderate but selective cytotoxicity against MCF-7 cells, with $IC_{50} = 18 \mu M$ compared with $IC_{50} = 54 \mu M$ for HaCaT cells.

Compd	R ———	IC ₅₀ [μΜ]			
		HeLa	HCT-116	MCF-7	HaCaT
5	Me	32 ± 1	26 ± 1	25 ± 1	49 ± 3
6	CF ₃	30 ± 1	$\textbf{13} \pm \textbf{0.4}$	25 ± 1	48 ± 3
7	Cl	34 ± 2	12 ± 0.4	$\textbf{19} \pm \textbf{0.7}$	47 ± 3
8	F	73 ± 3	60 ± 3	43 ± 2	92 ± 5
9	Me	37 ± 2	35 ± 1	$\textbf{18} \pm \textbf{0.7}$	54 ± 3
10	CF ₃	54 ± 3	64 ± 4	45 ± 2	101 ± 6
11	Cl	82 ± 4	99 ± 6	51 ± 3	145 ± 8

12 118 ± 6 66 ± 42 97 ± 6 Not tested **REFERENCES:** [1] Žołnowska B., Sławiński J., Pogorzelska A. et al. Eur J Med.. Chem. 2014; 71; 135–147. [2] Pogorzelska A., Sławiński J., Kawiak A. et al. Eur. J. Med. Chem. 2018; 155; 670–680. [3] Sławiński J., Bednarski P., Reszka P. Polish J Chem. 2004; 78; 369–379.

The 8th International Electronic ECMC **Conference on Medicinal Chemistry** 2022 01-30 NOVEMBER 2022 ONLINE