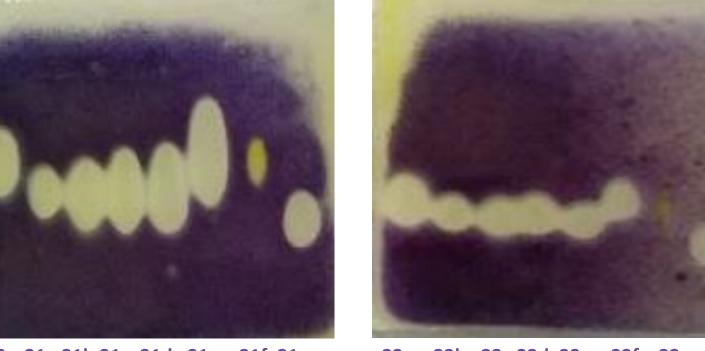
Evaluation of the antimicrobial activity of *N***-acylated 4-chloro-2-mercaptobenzenesulfonamide derivatives**

Anita Bułakowska¹, Jarosław Sławiński¹, Rafał Hałasa²


e-mail: anita.bulakowska@gumed.edu.pl

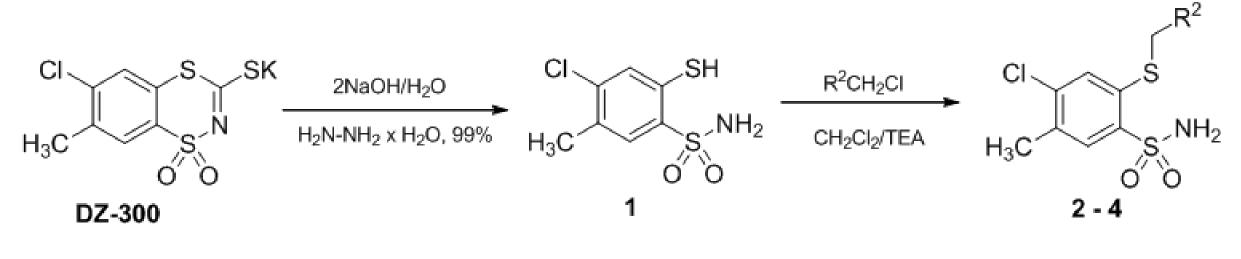
¹ Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
² Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland

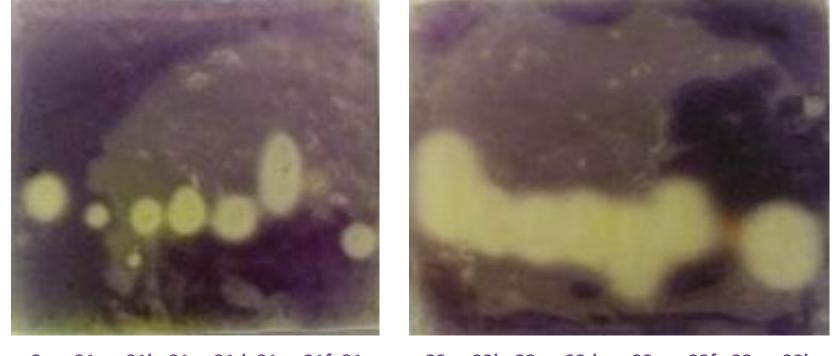
Introduction

Aryl/heteroarylsulfonamides are an important group of compounds with different directions of biological activity. The number of literature reports on the antibacterial activity of sulfonamides is steadily increasing, bringing a lot of interesting data on the diverse structures and mechanisms of their pharmacological action [1]. The presented research joins the stream of the search for new hybrid molecules being created as a result of the combination of various pharmacophores with interesting biological profiles [2, 3]. Particular attention was paid to their antibacterial activity.

Figure 1. Preliminary study of microbial activity by *TLC-bioautography* of compounds 21a-g and 22a-h.

Bacillus subtilis


C 21a 21b 21c 21d 21e 21f 21g


22a 22b 22c 22d 22e 22f 22g 22h

Synthesis

The new compounds were designed and obtained based on the structure of the pharmacophore group of 4-chlorobenzenesulfonamide functionalized in the 2-position on sulfur atom and the structure of chalcone (**Scheme 1**). Taking into account the previous results of own research and available literature data, the synthesis of *N*-(2-arylmethylthio-4-chloro-5-methylphenylsulfonyl)cinnamamide derivatives (**21a-g, 22a-h**) were synthesized. The efficiency of the carried out reactions were in the range of 39-85%. The substrates used for the syntheses were 4-chloro-2arylmethylthio-5-methylbenzenesulfonamide derivatives (**2-4**). In turn, the derivatives of cinnamic acid (**13-20**) were obtained by reacting the appropriate benzaldehyde derivatives (**5-12**) with malonic acid. The structures of the final compounds were confirmed using the spectroscopic methods: IR, ¹H NMR and elemental analysis C, H, N.

Scheme 1. Synthesis of *N*-(2-arylmethylthio-4-chloro-5-methylphenylsulfonyl)cinnamamide 21a-g, 22a-h.

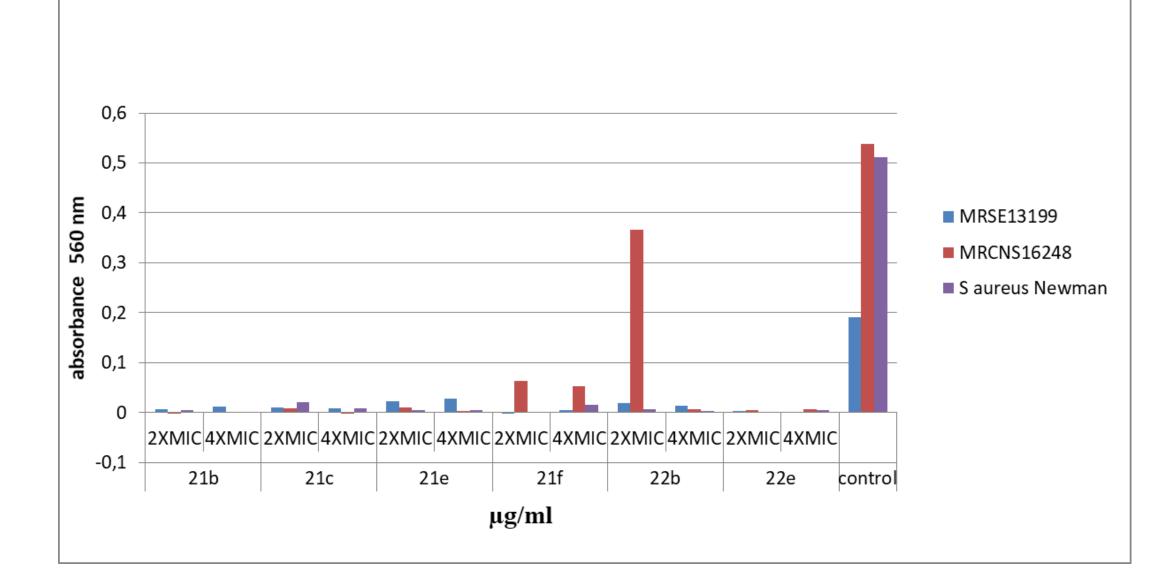
Staphylococcus aureus

C 21a 21b 21c 21d 21e 21f 21g 22a 22b 22c 22d 22e 22f 22g 22h

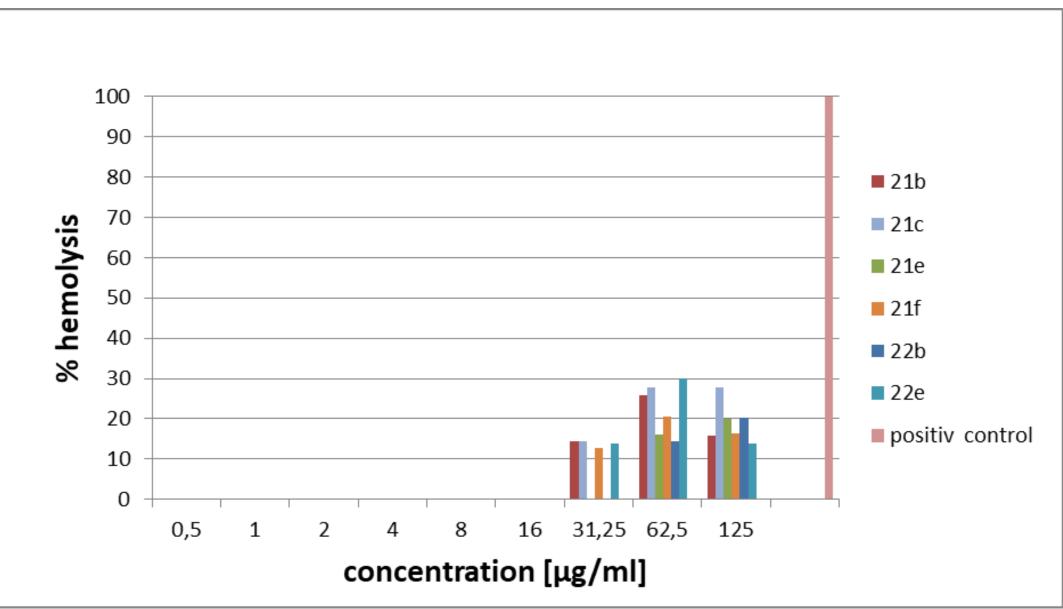
Based on the obtained results, tests were carried out against clinical strains: MRSA, MRCNS and *Enterococcus sp.* The influence of selected derivatives (**21b-c**, **21e-f**, **22b**, **22e**) on the formation of bacterial biofilm was also assessed. Compounds were tested at 2XMIC and 4XMIC concentrations. Inhibition of biofilm formation by MRCNS strains by 70-90%, compared to the control, at the concentrations of 2xMIC and 4xMIC was observed for most of the compounds selected for the study (the exception is **22b** at the concentration of 2xMIC) (**Figure 2**). The tested compounds show bacteriostatic properties and affect *quorum sensing* in biofilm formation.

Figure 2. Inhibition of biofilm formation of selected coagulase negative *Staphylococcus* strains.

			R ¹	<u>ا</u> ب 5 - 1		HOOC pyridine / p 80-90°C, 24	iperidin		1 <u>11</u> 11 13 - 2) 0	∕~_c		DCI, DMAF H ₂ Cl ₂	5	
										н	Cl I₃C				-R ¹
													21a-g 22a-h		
21a	21b	21c	21d	21e	21f	21g	22a	22b	22c	22d	22e	22f	22g	22h	
4-CH ₃	4-Br	4-NO ₂	4-F	4-Cl	3-F, 4-OCH ₃	4-N(CH ₃) ₂	4-CH ₃	4-Br	4-NO ₂	4-F	4-Cl	3-F, 4-OCH ₃	4-N(CH ₃) ₂	н	
		ĺ								cı	\mathcal{I}_{0}^{0}				


Biological activity

ZW.


 R^1

 \mathbb{R}^2

Preliminary microbiological analysis performed by *TLC-bioautography* showed the activity of **21a-g** and **22a-h** derivatives against Gram-positive bacteria: *Bacillus subtilis* and *Staphylococcus aureus* (**Figure 1**). Then, the antibacterial activity of 15 obtained compounds was confirmed in *in vitro* tests against Gram-positive bacteria: *S. aureus, S. epidermidis, Enterococcus hirae, Enterococcus faecalis* and *B. subtilis* and

Most of the tested compounds caused hemolysis in the blood at a concentration of $31.25 - 125 \ \mu g/ml$ (Figure 3). The hemolytic activity was demonstrated at the level of 12-30% relative to the positive control (1% triton-x 100). The obtained results require pharmacokinetic, bioavailability and mechanisms of action studies.

Figure 3. Hemolytic activity on the peripheral blood of domestic sheep (Ovis aries).

Corynebacterium diphtheriae. Co-trimoxazole was used as the reference compound. The tested compounds showed activity against standard strains of *Staphylococcus* bacteria (MIC from 0.2 to 16 μ g/ml), *Enterococcus* (MIC from 1 to 128 μ g/ml), *B. subtilis* (MIC from 64 to 128 μ g/ml) and *C. diphtheriae* (MIC from 64 to 128 μ g/ml). Activity against Gram-negative bacteria was not observed.

Literature: 1. Carta F., Scazzafava A., Supuran C.T., Expert Opin. Ther. Pat. (2012) 22, 747 – 758; 2. Sławiński J., Żołnowska B., Pirska D., Kędzia A., Kwapisz E., J. Enz. Inhib. Med. Chem. (2013) 28, 41-51.; 3. Żołnowska B., Sławiński J., Garbacz K., Jarosiewicz M., Kawiak A., Int. J. Mol. Sci. (2020) 21 (210) 1 - 13.

