

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01-30 NOVEMBER 2022 ONLINE

In silico investigations of dihydrophenanthrene derivatives as potential inhibitors of SARS-CoV-2

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by PROF. DR. MARIA EMÍLIA SOUSA

Imane Yamari¹, Suraj N. Mali², Oussama Abchir¹, Hassan Nour¹, Said Gmouh³, M'Hammed El Kouali¹, Samir Chtita^(1,*)

1 Laboratory of analytical and molecular chemistry, Faculty of sciences Ben M'Sik, Hassan II university of Casablanca, B.P 7955, Casablanca, Morocco; 2 Department of pharmaceutical sciences & amp; technology, Birla institute of technology, Mesra, Ranchi, India; 3 Laboratory LIMAT, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca, Morocco.

* Corresponding author: samirchtita@gmail.com

In silico investigations of 9,10 dihydrophenanthrene derivatives as potential inhibitors of SARS-CoV-2

Abstract

Since its appearance in Wuhan on December 2019, finding ways to manage the COVID19 pandemic becomes the biggest challenge the world is facing. In this investigation, we used quantitative structure-activity relationship (QSAR) study, Absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis and computational molecular docking simulations to screen and assess the efficacy of thirty-nine bioactive 9,10-dihydrophenanthrene analogues. The density functional theory (DFT) optimization using the B3LYP/6-31G(d, p) level was used for the calculations of molecular descriptors and the principal component analysis (PCA) was used to eliminated redundant and nonsignificant descriptors. After that, statistically robust models were developed using multiple linear regression (MLR) method. All derived models were then subjected to thorough external as well as internal statistical validations, Yrandomization and applicability domain analysis. These validations were carried out as per the OECD principles. The best built model was used to design new molecules that have good inhibitory activity against SARS-CoV-2. Pharmacokinetics properties were then determined using ADMET analysis to weed out any that would be harmful to the human body or cause adverse effects. Through the use of computational molecular docking simulations, in silico research was conducted on deigned compounds to forecast their SARS-CoV-2 activity and determine the stability of the evaluated ligands during their contacts with the protein of desired activity.

Keywords: SARS-CoV-2, Dihydrophenanthrene, QSAR, MLR, ADMET, Molecular Docking.

Introduction

2022

2D-QSAR methodology and validation

ECMC

2022

Pharmacokinetic properties

ECMC

A good selectivity and affinity to the target in the results of the molecular docking and the molecular dynamics studies.

A good pharmacokinetic profile: the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties must be checked.

The 8th International Electronic **Conference on Medicinal Chemistry** 01-30 NOVEMBER 2022 | ONLINE

A good activity while using the QSAR methods

SARS-CoV-2

At the end of 2019, a cluster of pneumonia cases occurred in Wuhan, China. It then quickly spread to other parts of the world causing a pandemic situation popularly termed as Coronavirus (CoV) Disease-2019 (COVID19).

With the aim of prioritizing the candidate drugs, various chem-bioinformatics methods were used. According to the study of Jian-Wei Zhang and al (2022), the discovery of non-covalent SARS-CoV-2, 3CLpro inhibitors (9,10-dihydrophenanthrene scaffold) was with fluorescence resonance energy transfer (FRET) biochemical assay. Also, the in vitro metabolic stability in the gastrointestinal tract, human plasma, and liver microsome, were validated. So we based our work, on the dataset established by the previous study of thirty-nine (39) substituted 9, 10dihydrophenanthrene analogs covering a wide chemical space and having moderate to high activity against the COVID-19 virus strain.

Application

ECMC

2022

2D-QSAR study of 9,10 dihydrophenanthrene derivatives as potential inhibitors of SARS-CoV-2

Molecular descriptors

Chem3D

Gaussian 09 DFT (B3LYP, 6-31G(d))

ECMC

2.02.2

- Molecular Weight
- Number of HBond Acceptors
- Number of HBond Donors
- Molecular Refractivity
- Coefficient of partition Octanol/Water
- Pka (log units)
- Number Rotatable Bonds
- Polar Surface Area
- **Topological Diameter**
- Energy gap
- Dipole Moment
- Electronegativity
- Energy gap
- Energy HOMO
- Energy LUMO

Molecular descriptors

PaDEL and ChemDes

- AATS5e MATS2m VE3_DzZ SpMin2_Bhi RDF145m

- Nacc
- Nrot

- Moment dipolar Weight Energy HOMO
- Energy LUMO

Results and discussion

ECMC

2022

 $> pIC_{50} = f(MR, PSA, E_{GAP}, E_{Homo-1})$

 $R^{2}=0.805$ $R^{2}adj=0.777$ $R^{2}cv=0.732$ R^{2} test=0.731 MSE=0.042 F=28.951 P value< 10⁻⁴

 \geq pIC₅₀ = f (AATS5e,MATS2m,VE3_DzZ,SpMin2_Bhi,RDF145m) $R^{2}=0.895$ $R^{2}adj=0.872$ $R^{2}cv=0.855$ MSE=0.042 F=39.422 P value< 10^{-4}

Statistical parameters for the best MLR model

	R ²	0.805	>0.600
Statistical parameters	R ² adj	0.777	>0.600
	MSE	0.042	A low value
	F	28.951	A high value

	R ² _{cv}	0.732	>0.500
	Average of 50 R ² _{rand}	0.100	< R ²
Internal validation	Average of 50 R ² _{cv rand}	-0.253	< R ² _{cv}
	cR²p	0.758	>0.500

External validation

Applicability Domain (AD)

01-30 NOVEMBER 2022 | ONLINE

The new designed molecules

ECMC

022

N° R_1 R_2 Molecules OH 2 R₁ Ŕ₂ 3 Structures of the proposed molecules proposed by the MLR model based on 4 molecule 21: $R_1 = 4$ -Br Phenyl $R_2 = 5$ -Ph 5 The anti SARS-CoV2 activity values 6 $pIC_{50}(21) = 5.61 h^{*} = 0.378$

> The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE

	MR	PSA	E _{GAP}	E _{Homo⁻¹}	pIC ₅₀	h	
	19.278	58.89	0.159	-5.887	6.147	0.494	
CI	18.202	58.89	0.167	-6.286	6.354	0.316	>
	20.832	58.89	0.154	-6.061	6.307	0.709	
	20.055	58.89	0.153	-6.029	6.295	0.595	
`	17.711	58.89	0.168	-6.127	6.235	0.291	
	20.260	58.89	0.154	-6.078	6.319	0.618	

Molecular docking :

3D Representation of the interaction between the active sites of 6LU7 and ligand 2

ECMC

	Name	Visible	Color	Parent	Distance	Category	Types	
1	A:THR 19	No No		Ligand No	2,95755	Hydrogen Bond	Conventional Hydrogen	-
2	A:GLN19	No No		Ligand No	2,9208	Hydrogen Bond	Conventional Hydrogen	
3	:UNK0:H5	No No		Ligand No	2,66162	Hydrogen Bond	Conventional Hydrogen	-
4	A:MET16	No No		Ligand No	3,36287	Hydrogen Bond	Carbon Hydrogen Bond	
5	A:HIS41:	Ves		Ligand No	4,92427	Electrostatic	Pi-Cation	-
6	A:CYS14	No No		Ligand No	4,18389	Hydrogen Bond	Pi-Donor Hydrogen Bond	
7	A:MET49:	Ves		Ligand No	3,5561	Hydrophobic	Pi-Sigma	-
8	:UNK0:C2	Ves		Ligand No	3,75776	Hydrophobic	Pi-Sigma	
9	:UNK0:CL	Ves		Ligand No	3,84441	Hydrophobic	Pi-Sigma	
10	A:CYS14	Ves		Ligand No	5,99419	Other	Pi-Sulfur	
11	:UNK0 - A	Ves Yes		Ligand No	5,41537	Hydrophobic	Pi-Alkyl	
12	:UNK0 - A	Ves		Ligand No	4,31248	Hydrophobic	Pi-Alkyl	

Molecular docking

3D Representation of the interaction between the active sites of 6LU7 and ligand 5

ECMC

nt	Distance	Category	Types
d N	2,872 <mark>4</mark> 9	Hydrogen Bond	Conventional Hydrogen Bond
d N	3,35956	Hydrogen Bond	Carbon Hydrogen Bond
d N	3,44069	Hydrogen Bond	Carbon Hydrogen Bond
d N	3,57554	Hydrophobic	Pi-Sigma
d N	3,77466	Hydrophobic	Pi-Sigma
d N	5,95165	Other	Pi-Sulfur
d N	5, <mark>4017</mark> 8	Hydrophobic	Pi-Alkyl
d N	4,21981	Hydrophobic	Pi-Alkyl
d N	4,99805	Hydrophobic	Pi-Alkyl

Evaluation of drug-likeness properties

Properties	MW	Log P	HBA	HBD	Surface area	RB	Docking score
Rules	<500 Da	<5	<10	<5	<140 A ²		
Molecule 7	632.598	9.763	4	1	261.095	8	-8.4 kcal/mol
Molecule 10	667.043	9.982	4	1	271.398	9	-8.2 kcal/mol

Predicted ADMET properties of the designed compounds

Property	Model Name	Predicted Value for molecule 10	Predicted Value for molecule 7
Absorption	Intestinal absorption (human)	94.741	95.333
Distribution	VDss (human)	-1.286	-1.251
Distribution	Fraction unbound (human)	0.337	0.333
Metabolism	CYP2D6 substrate	No	No
Metabolism	CYP3A4 substrate	Yes	Yes
Metabolism	CYP1A2 inhibitior	Yes	No
Metabolism	CYP2C19 inhibitior	No	No
Metabolism	CYP2C9 inhibitior	Yes	Yes
Metabolism	CYP2D6 inhibitior	No	No
Metabolism	CYP3A4 inhibitior	No	No
Excretion	Total Clearance	-0.213	-0.206
Toxicity	AMES toxicity	No	No

ECMC

2022

The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE

Unit

- Numeric (% Absorbed)
- Numeric (log L/kg)
- Numeric (Fu)
- Categorical (Yes/No)
- Numeric (log ml/min/kg)
- Categorical (Yes/No)

Conclusion

- In this work, we developed MLR-2D QSAR model for a series of 39 dihydrophenanthrene derivatives as potential inhibitors of SARS-CoV-2.
- We designed six molecules based on the best built MLR model,
- Among the molecules designed, two molecules with high activities that belongs to the applicability domain, and both of the molecules respects the ADMET properties.
- These two molecules can be considered as a drug-candidates after conducting additional *in vivo* and *in vitro* investigations before the clinical trial procedure.

THANK YOU!

The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE

ECMC

