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Abstract: Sensor networks using the Internet of Things (IoT) are gaining momentum for real-time 

monitoring of the environment. Increased use of natural resources due to a rise in agriculture pro-

duction, manufacturing, and civil infrastructure, poses a challenge to sustainable growth and de-

velopment of the global economy. For sustainable use of natural resources (including air, soil, and 

water), data-driven modeling is needed to understand and simulate contaminant transport and pro-

liferation. Different logging devices are specifically designed to integrate with environmental sen-

sors that send real-time data to the cloud using IoT systems for monitoring. The IoT systems use an 

LTE network or Wi-Fi to transmit air, water, and soil quality data to the cloud networks. This seam-

less integration between the logging devices and IoT sensors creates an autonomous monitoring 

system that can observe environmental parameters in real-time. Various federal organizations and 

industries have implemented the IoT-based sensor network to monitor real-time air quality param-

eters (particulate matter, gaseous pollutants), water quality parameters (turbidity, pH, temperature, 

and specific conductance), and soil parameters (moisture content, soil nutrients). Although several 

organizations have used IoT systems to monitor environmental parameters, a proper framework to 

make the monitoring systems reliable and cost-efficient was not explored. The main objective of this 

study is to present a framework that combines a sensing layer, a network layer, and a visualization 

layer, allowing modelers and other stakeholders to observe a progressive trend in environmental 

data while being cost-efficient. This efficient real-time monitoring framework with IoT systems 

helps in developing robust statistical and mathematical models. Sustainable development of smart 

cities while maintaining public health requires reliable environmental monitoring data that can be 

possible by the proposed IoT framework. 
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1. Introduction 

Globalization with the increase in product demand resulted in excessive manufac-

turing and service provisions due to the rise in global consumption. This unwarranted 

product manufacturing without environmental concern while lacking user necessity can 

cause an increased risk of natural resource pollution due to complex manufacturing pro-

cesses and lack of regulations. Stationary and mobile pollution sources in the areas of 

agriculture, industries, and other land management activities produce contaminants that 

can cause adverse health effects to humans [1–3]. Maintaining the quality of air, water, 

and soil is crucial for sustainable development since it is crucial for human health [4,5]. 

To protect human health, regulatory agencies such as the Environmental Protection 
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Agency (EPA) and the United States Department of Agriculture (USDA) have established 

guidelines to prevent ecological and environmental stress on natural land, ambient air, 

and water resources in the United States (US). In compliance with the regulations, indi-

viduals and other stakeholders that use natural resources as ecosystem service provisions 

should monitor the environmental quality parameters regularly. Since environmental 

monitoring is critical in understanding the contaminant behavior in natural ecosystems, 

different monitoring methods are needed to be explored from a scientific perspective. Be-

sides, the environmental monitoring systems are expensive with little involvement by 

common individuals to set up a monitoring station [6]. Therefore, there is a growing de-

mand for environmental pollution monitoring systems with IoT. Conventional monitor-

ing systems are relatively complex, time taking, and expensive when compared to IoT-

based systems which can equip stakeholders and facilities to detect the sources of contam-

inants quickly [7,8]. The current study provides information on the application of IoT-

based systems for low-cost environmental monitoring. In addition to that, a reliable IoT 

framework that has applications in developing mathematical and statistical models to un-

derstand the pollution source and their behavior is proposed. 

2. System Design and Implementation 

2.1. Framework 

The traditional architecture for an IoT-based monitoring system involves three layers 

that include sensing layer, network layer, and application layer as shown in Figure 1. The 

sensing layer consists of environmental sensors that measure the concentrations of the 

desired pollutants and other quality parameters. Currently, custom-designed sensors are 

being developed which are efficient and cost-effective compared to commercial probes [9–

12]. The open-source Arduino platform is integrated with microcontrollers’ log data uti-

lizing IoT architecture to account for real-time natural resource monitoring. All Arduino-

programmed microcontrollers have the ability to execute extensive code in seconds, mak-

ing it an efficient resource for collecting data in seconds [13]. Arduino can support several 

custom-designed sensors that are supported by humongous communities to develop li-

braries that help in the integration of sensors into IoT architecture. 

Recent advancements show that these microcontrollers are integrated with telemetry 

to send the collected data to a known cloud server for data transmission. The telemetry 

used for data transmission includes radio communication, Global System for Mobile com-

munication (GSM), and WiFi. Also, the rise in IoT networks created momentum in Sub-

scriber identity module manufacturing companies such as Hologram, TRUPHONE, SO-

RACOM, and Things Mobile [14]. This increase in telemetry capability with rising cellular 

internet connectivity makes the IoT architecture ideal for real-time monitoring of air, wa-

ter, and soil. 

As shown in Figure 1, the data transmitted to the cloud can be saved online or data 

loggers have the capability to use microSD cards to store data. Since most microSD cards 

need voltage in the range between 2.7 and 3.6 volts such that local hardware storage is a 

possibility [15]. Since most of the environmental sensors collect data as plain text in bytes 

as a Comma Separated Value file, microSD provides large amounts of storage options. In 

addition to storage, the cloud server for IoT architecture needs to have data visualization 

as a time series to look at the data trend collected by sensors. If the trend in environmental 

data collected does not stay in a statistically significant range then post-processing needs 

to be integrated into the IoT network. The post-processing includes machine learning 

methods such as non-parametric random forests and artificial neural networks (ANN) to 

denoise data and removes anomalies. Quality assurance/Quality control (QA/QC) of the 

data collection is very important when it comes to reliable environmental data collected 

by smart environmental monitoring networks using IoT systems [16]. 

After post-processing, visualizing collected data in real time can provide stakehold-

ers and environmental modelers with an overview of the sensor network’s operational 
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status. If the sensors require maintenance or the station goes down the modeler or the 

monitoring individual can address the problem. This seamless real-time data visualiza-

tion can enable quick response times to maintain the sensor station and reduce data gaps 

during the monitoring process. 

 

Figure 1. Schematic diagram of IoT architecture for real-time environmental monitoring applica-

tions. 

2.2. Smart Monitoring Systems Using IoTs 

Environmental monitoring systems have advanced significantly thanks to IoT archi-

tecture’s smart monitoring options. Some of the most focused regions of smart environ-

mental monitoring systems using IoT architecture include air quality monitoring, water 

quality monitoring, and soil quality monitoring as shown in Figure 2. In this study, all the 

major findings of the proposed IoT architecture are reported. Monitoring the environment 

using smart IoT systems provides an integrated approach to collecting and improving 

reliable data collection for modeling purposes [17,18]. Based on the previous literature we 

found that there are challenges that needed to be addressed with smart monitoring sys-

tems. Some of the challenges with smart monitoring technologies using IoT architecture 

are shown in Table 4. 
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Figure 2. Sample IoT systems for environmental monitoring applications. 

Quality parameter monitoring using IoT systems are implemented using heteroge-

neous sensors and machine learning. A brief discussion is provided in this section about 

the critical quality parameters that can be measured using IoT sensors to assess the quality 

of air, water, and soil. These critical quality parameters can be used to compute the quality 

index of different media including air, water, and soil. (Note: The Quality Index (QI) is a 

measure to assess the contamination of the media. QI is also used as a common indicator 

for comparison across media geospatially and temporally). 

2.2.1. Air Quality 

Air IoT systems collect real-time data including the critical quality parameters such 

as Temperature (in °C or °F), Humidity (in %), CO₂ (in ppm), Pressure (in hPa), TVOC (= 

total concentration of volatile organic compounds such as asbestos, for example, in ppb), 

eCO₂ (= estimated concentration of CO₂ calculated from TVOC; in ppm), Particulate mat-

ter (in µ/m2). The sensors can be altered based on the prioritization of the air quality pa-

rameters [19]. The application of IoT systems in air quality helps to identify the air toxins 

from various air polluting sources including stationary sources (such as industries, agri-

culture, commercial kitchens, etc) and mobile sources (such as cars, trucks, ships, etc) [20]. 

An example of an air quality monitoring sensor is presented in Figure 3. The information 

collected from the IoT systems can be used to prevent the significant deterioration of air 

quality and is helpful to determine revised standards of public health. 

There are many indicators to identify the air quality. One of the main and commonly 

used indicators to identify the concentration of air pollutants at a specific location is Air 

Quality Index (AQI). AQI ranges from 0 to 100. The least number (0) represents good air 

quality, and the highest number (500) represents hazardous air quality that represents an 

emergency (See Table 1). AQI numbers are determined by hourly measurements of five 

major pollutants based on geographic location such as fine particles (PM2.5), ground-level 

ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) [21]. The 

formulation to compute AQI is represented in Equation (1). 

𝐴𝑄𝐼 =
𝐼𝐻𝑖−𝐼𝑙𝑜

𝐵𝑃𝐻𝑖−𝐵𝑃𝐿𝑜
∗ (𝐶𝑝 − 𝐵𝑃𝐿𝑜) + 𝐼𝐿𝑜  (1) 

where, 

Cp = the rounded concentration of the pollutant 

BPHi = the breakpoint that is greater than or equal to Cp 

BPLo = the breakpoint that is less than or equal to Cp 

IHi = the AQI value corresponding to BPhi 
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Ilo = the AQI value corresponding to BPLo 

(Note: The pollutant with the highest AQI value is used to characterize the overall 

AQI) 

Table 1. Air Quality Index characterization [22]. 

Ambient Air Quality AQI 

Good 0–50 

Moderate 51–100 

Unhealthy for sensitive groups 101–150 

Unhealthy 151–200 

Very Unhealthy 201–300 

Hazardous 301–500 

2.2.2. Freshwater Quality 

Maintaining surface water quality in streams and rivers is necessary to maintain wa-

tershed and ecosystem health. Water impairment issues due to different land manage-

ment practices in a watershed can deteriorate the ecosystem and watershed health down-

stream. Major surface water quality problems associated with freshwater bodies in the 

U.S. include increasing concentrations of toxic contaminants such as heavy metals and 

poly-fluoroalkyl substances (PFAS). The clean water act requires EPA to regulate surface 

water quality based on multiple criteria that include aquatic life, biological species, human 

health, and recreational criteria. The primary surface water quality parameters include 

pH, temperature, dissolved oxygen, specific conductance, turbidity, nitrates, phosphates, 

and heavy metals. These critical parameters are measured using IoT system sensors. An 

example of a water quality monitoring sensor is presented in Figure 3. Most of the afore-

mentioned water quality parameters are used in developing a water quality index by re-

searchers to evaluate water quality in surface freshwater bodies. This index summarizes 

the different water quality data into a single score ranging from 0 to 100 (See Table 2). This 

index is highly useful when comparing surface water quality across different rivers and 

streams. All of these surface water bodies have a large spatial extent and to understand 

the behavior of contaminant transport large amounts of data are needed. When it comes 

to data, both spatial resolution and temporal resolution are important to understand how 

the changes in land management activities impair surface water quality within the water-

shed. The WQI formulation is presented in Equation (2) [23]. 

𝑊𝑄𝐼 =
∑ 𝑞𝑛𝑊𝑛

𝑛
𝑛=1

∑ 𝑊𝑛
𝑛
𝑛=1

  (2) 

Table 2. Water Quality Index characterization. 

Water Quality WQI 

Excellent 95–100 

Good 80–94 

Fair 60–79 

Marginal 45–59 

Poor 0–44 
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Figure 3. Schematic diagram of environmental sensors for IoT applications. 

2.2.3. Soil Quality 

Soil management choices affect the amount of soil organic matter, soil structure, soil 

depth, and water, nutrient holding capacity, and also pollutant concentrations in the soil. 

The soil quality index (SQI) is developed to measure soil quality in terms of soil function-

ing [24]. The suggested standard ranges of SQI to assess soil quality are mentioned in 

Table 3 [25]. Some of the critical parameters required to compute SQI are pH, Electric 

Conductivity, Soil temperature, Bulk density, a fraction of water stable aggregates, geo-

metric mean diameter, mean weight diameter, penetration resistance, soil organic carbon, 

concentration, Nitrogen concentration, C-Stock, N-Stock, available water content, and soil 

water content. These parameters can be measured with the use of IoT sensors [26]. An 

example of a soil quality monitoring sensor is presented in Figure 3. Ambient atmospheric 

parameters such as Solar Radiation, Weather (Precipitation, Temperature, Humidity, Air 

pressure, Wind speed, and Wind direction) which affect the critical parameters can also 

be measured with the IoT sensors [27]. The formulation to compute SQI is presented in 

Equation (3). 

∑ 𝑆𝑄𝐼 = ∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑜𝑖𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒𝑠  (3) 

Table 3. Soil Quality Index Characterization [28]. 

Soil Quality SQI 

Very Good 0.80–1.00 

Good 0.60–0.79 

Moderate 0.40–0.59 

Low 0.20–0.39 

Very Low 0.00–0.19 

3. Challenges to Applying IoT Architecture for Environmental Monitoring 

3.1. Identification and Scalability 

The number of devices that can connect to an IoT system can be large and the address 

space should be able to accommodate all the connected devices. Also, the issue of scala-

bility arises when large devices are connected such that data generated by the combined 

sensor network is humongous. In IoT systems, there are two types of scalability issues 

including horizontal scalability and vertical scalability. Horizontal scalability refers to the 
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addition or removal of IoT nodes to the IoT network. Vertical scalability refers to the ad-

dition or removal of computational capabilities to a single IoT node or a group of IoT 

nodes. Most of the horizontal and vertical scalability issues are addressed with the in-

crease in computing capability of the cloud [29]. Although there is substantial improve-

ment in cloud computing, some challenges remain such as data storage, functional scala-

bility, control access, and so on. 

3.2. Data Management 

As sensor networks generate large amounts of data, errors and duplicates in the data 

need to be cleaned before use. The unreliability of data that is produced by IoT systems is 

called dirty data. The categorization of dirty data can be in four forms including False 

positive, False negative, Invalid and Redundant [30]. False positive data is also referred to 

as noise where the IoT system collects excessive data that is not expected. False negative 

is the interference of signal between the sensors and the complex sensing environment. 

Both false positives and false negatives can produce data that needs to be removed from 

the actual sensing data for modeling purposes. Also, the sensing network can collect data 

that is away from the normal range resulting in invalid data. Besides if there is more than 

one sensor that collects data to ensure signal coverage this might result in data redun-

dancy. However, there are several frameworks that are being studied to improve data 

quality. Some of the frameworks that can be used to eliminate data quality issues include 

stream data cleaning, temporal granule, and spatial granule frameworks. 

3.3. Security and Privacy of Sensitive Data 

Lack of privacy and security has been an issue of concern when it comes to using 

conventional IoT systems. Recently both hardware and software solutions are able to 

solve problems associated with security and privacy. When it comes to hardware, new 5G 

technology, enhanced local network protocols, and improved Radio Frequency Identifi-

cation (RFID) are prominent in tackling data privacy. Software solutions such as rein-

forced security features, zero-trust security, and key management systems improve the 

security features of IoT systems [31,32]. However, most of the environmental data col-

lected should be open source but the data regarding people involved is protected to pre-

vent an unwarranted invasion of privacy. 

3.4. Energy Efficiency 

IoT systems usually involve a large number of sensors that are expected to operate 

for years. The sensor nodes demand transmission schemes that are usually energy-effi-

cient and address the problem of excess energy use in IoT networks. Previous researchers 

have investigated several approaches to address the excess energy use problem by IoT 

networks and there are three significant developments. The first development includes 

finding efficient routing protocols for the IoT nodes [33]. Optimizing the communication 

link between the sensors and the microcontroller can reduce unnecessary data transmis-

sion by adopting sleep and wake strategies based on the network. In addition to network 

protocols, using renewable energy devices in the IoT network can reduce the energy re-

quirement for data storage and transmission [34]. An increase in the use of renewable 

energy devices has been a formidable development when it comes to reducing unneces-

sary energy use by sensor networks. The recent major development includes using wire-

less charging mechanisms to overcome power management issues, especially for a large 

sensor network [35,36]. However, using wireless charging networks with zero-energy sen-

sor nodes can cause reliability issues with data transmission. 

3.5. Adaptive Sensing 

Adaptive sensing minimizes the number of active nodes to measure the environmen-

tal parameters. Using stochastic processes, the level of redundancy in the sensor 
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measurements can be minimized. In addition to data, the adaptive sensing framework 

results in significant energy savings while maintaining the data quality. As adaptive sens-

ing uses prediction to determine the sampling rate there is a tradeoff between the amount 

of energy consumed and the quality of data recorded. The adaptive sensing algorithms 

should be tailored in such a way that dynamic environmental data is captured while sav-

ing energy use significantly. This study does not include adaptive sensing in the frame-

work which needs to be investigated further 

Table 4. Challenges with smart monitoring technologies using IoT architecture. 

Soil Quality SQI Methods Used Reference 

Soil monitor-

ing for farming 
0.80–1.00 

Wireless sensor network with 

IoT 
Shinde et.al 

Air pollution 

monitoring 
0.60–0.79 

Air pollution sensors inte-

grated with IoT 
Dhingra et.al 

Water pollu-

tion monitor-

ing 

0.40–0.59 
Stream monitoring sensors in-

tegrated with IoT 
Kamaludin et.al 

3.6. Discussion 

Water quality monitoring has been expanded in the US using free online data portals 

to discover and explore stream monitoring networks. The server currently holds more 

than five hundred datasets from several researchers, citizens, and resource personnel. The 

main objective of the growing community of users to share public stream quality data is 

made possible using smart IoT networks with low-cost sensors. This Do it yourself phi-

losophy of educators in the field of environmental monitoring has paved the way for 

smart IoT networks to be used by common individuals. In addition to the user-friendly 

IoT systems, the data loggers developed use Arduino-based open source software for sim-

ple integration between sensor networks and IoT applications. The result of these open-

source IoT monitoring networks is to provide environmental data for time series analysis 

and long-term data visualizations 

4. Test Case of IoT Monitoring Network for Water Quality 

In this study, a stream monitoring station on the border of Idaho and Utah is consid-

ered to visualize the time series of water quality parameters. The water quality parameters 

collected by the stream monitoring networks provide important information on stage, 

specific conductance, and water temperature. 

4.1. Geo-Spatial Watershed Monitoring 

With the increase in applications of smart environmental monitoring using IoT sys-

tems, scientific educators such as Stroud Water Research Center has taken an initiative to 

create an open source cloud platform to share water quality data. This open source data 

initiative resulted in a huge number of individuals placing monitoring stations and shar-

ing their monitoring data online using IoT systems as shown in Figure 4. This open-source 

data sharing for environmental monitoring results in data that can be shared and used 

based on user preference. 

The water quality data collected by stream monitoring sensors can help develop wa-

tershed models. These watershed models are very important when it comes to under-

standing the fate and transport of contaminants in the stream networks. Some of the most 

notable watershed models in the field of water quality modeling include the Soil and wa-

ter assessment tool, Hydrologic simulation program in Fortran. These simulation models 

simulate the water quantity and quality of surface and groundwater within the watershed. 

Most of these models requires discharge data of stream network which can be obtained 
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from stage data collected by IoT systems. This case study shows the importance of stream 

monitoring to understand both water quantity and water quality for modeling contami-

nant and sediment transport in surface water. Besides, frequently monitoring a stream 

network close to a surface water body as shown in Figure 5. helps in understanding the 

dynamics of surface water quality issues that negatively impact ecosystem service provi-

sions and human health. 

 

Figure 4. Geo-spatial locations of stream monitoring stations in the United States from EnviroDIY 

data sharing portal. 

 

Figure 5. Sample monitoring station used in the current study. 
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4.2. Water Quality Time Series 

Visualization of time series can provide continuous measurements of observed envi-

ronmental data that can be used to see the simulated model performance. The framework 

provided in this study uses open-source python tools to clean and visualize a continuous 

time series of water quality parameters. Some of the outliers in the data have been visual-

ized and removed such that the result is smooth continuous observed data that can be 

used for model performance evaluation and comparison. 

 

Figure 6. Time series of water quality parameters collected by the smart IoT network. 

5. Conclusions 

A framework of IoT systems in environmental monitoring applications using low-

cost sensors is presented in the current study. In addition to the traditional framework, a 

few critical suggestions were recommended to overcome the challenges involved in the 

IoT systems to improve data reliability while being economically efficient. The critical 

suggestions involve the need to perform extensive research on 

• Data-driven deep learning for adaptive sensing applications and improving the func-

tional capability of IoT systems with minimum human interference 
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• Big data cleaning is necessary due to a large sensor network collecting diverse infor-

mation such that cloud computing can play a vital role in providing processing 

power for data cleaning and visualization 

• Data denoising is necessary while dealing with big data of IoT networks especially 

while collecting dynamic environmental systems which are affected by external cli-

matic and weather events. 

When it comes to environmental monitoring applications, the current study focused 

mainly on air, water, and soil monitoring for sustainable growth and development. The 

framework proposed encourages individuals and all the other stakeholders who are in-

terested in environmental monitoring applications to use the IoT systems to better under-

stand the behavior of contaminants’ fate and transport within a system boundary. 

A test case for stream monitoring has been discussed in detail which incorporates the 

use of IoT systems to improve watershed health based on building water quality models 

using monitored data. These water quality models developed based on data-driven mod-

els help understand contaminant transport within the streams that ultimately end up in 

surface water bodies. A similar approach can be applied to air and soil modeling applica-

tions which assist in building models that help recommend best management practices to 

meet sustainable development goals while coordinating with different land management 

activities. 

The future scope of this work is to focus on studying the data collected by these IoT 

systems to improve the modeling aspects of the environment to simulate the behavior of 

contaminants. These modeling aspects have a significant role concerning the increasing 

intensity of weather events by climate change and global warming. 
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