

Proceeding Paper A Novel Photoelectrochemical Biosensor for Cystic Fibrosis Detection ⁺

Simone Bassini 1,2,*, Elise Daems 1,2, Ken Op de Beeck 3,4, Guy Van Camp 3,4 and Karolien De Wael 1,2

- ¹ A-Sense Lab, University of Antwerp, 2020 Antwerp, Belgium; e-mail2@e-mail.com (E.D.); e-mail5@e-mail.com (K.D.W.)
- ² NanoLab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
- ³ Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium; e-mail3@e-mail.com (K.O.d.B.); e-mail4@e-mail.com (G.V.C.)
- ⁴ Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
- * Correspondence: simone.bassini@uantwerpen.be
- + Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022; Available online: https://ecsa-9.sciforum.net/.

Abstract:

Keywords:

Nucleic acids and corresponding mutations are crucial in the diagnosis of a broad range of genetic diseases such as cystic fibrosis [1]. This is the most common and fatal autosomal recessive genetic disease in EU countries and the USA [2].

Over the years, different electrochemical sensors have been developed for the detection of nucleic acids to meet the demand for point-of-care diagnostics. However, these technologies have different drawbacks such as: (i) low limit of detection (ii) need of a welldefined orientation of DNA strands on the electrode surface (iii) need of a trained person and iv) time-consuming sample preparation [3].

This work contributes to the diagnosis of cystic fibrosis via the development of a novel photoelectrochemical biosensor for the detection of its most common DNA mutation (i.e., Δ F508, accounting for approximately 70% of all mutations) in the gene *cystic fibrosis transmembrane conductance regulator*.

This groundbreaking platform exploits a sandwich assay combining (i) photosensitizers, that produce singlet oxygen ($^{1}O_{2}$), as a label in the detection strategy, (ii) a redox reporter (i.e., hydroquinone) and (iii) magnetic beads, used to attract the synthetic DNA sequences close to the electrode surface, enhancing the sensitivity [4]. Since the signal is only triggered by light, a main advantage of our sensor is the clear distinction between signal and background by turning on/off the light source.

Using this platform, we explore the effect of different buffers on the resulting photocurrent and we demonstrate the specific detection of the desired target (Δ F508) while avoiding unwanted interactions with random sequences.

Author Contributions:

Funding:

Institutional Review Board Statement: Informed Consent Statement: Data Availability Statement:

Citation: Bassini, S.; Daems, E.; de Beeck, K.; Van Camp, G.; De Wael, K. A Novel Photoelectrochemical Biosensor for Cystic Fibrosis Detection. *Eng. Proc.* **2022**, *4*, x. https://doi.org/10.3390/xxxx

Academic Editor: Jean-marc Laheurte

Published: 1 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Conflicts of Interest:

References

- 1. Wei, F.; Lillehoj, P.B.; Ho, C.M. DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. *Pediatr. Res.* **2010**, *67*, 458–468.
- 2. Scotet, V.; L'hostis, C.; Férec, C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR gene discovery. *Genes* **2020**, *11*, 589.
- 3. Rashid, J.I.A.; Yuso, N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. *Sens. Bio-Sens. Res.* **2017**, *16*, 19–31.
- 4. Shanmugam, S.T.; Shanmugam, S.T., Trashin, S.; De Wael, K. Singlet oxygen-based photoelectrochemical detection of DNA. *Biosens. Bioelectron.* **2022**, *195*, 113652.