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Abstract: Data-driven formulations are currently developed and can result extremely helpful to deal 

with the complexity of the multi-physics governing the response of micro-electro-mechanical sys-

tems (MEMS) to the external stimuli. Such devices are in fact characterized by a hierarchy of length- 

and time-scales, which are difficult to fully account for in a purely model-based approach. In this 

work, we specifically refer to a (single-axis) Lorentz force micro-magnetometer designed for navi-

gation purposes. Due to an alternating current flowing in a slender mechanical part (beam) and 

featuring an ad-hoc set frequency, the micro-system is driven into resonance so that its sensitivity 

to the magnetic field gets improved. A reduced-order physical model was formerly developed for 

the aforementioned movable part of the device; this model was then used to feed and speed up a 

multi-physics and multi-objective topology optimization procedure, aiming to design a robust and 

performing magnetometer. The stochastic effects, which are responsible for the scattering in the 

experimental data at the microscale, were not accounted for in such a model-based approach. A 

recently proposed formulation is here discussed and further extended to allow for such stochastic 

effects. The proposed multi-scale deep learning approach features: at the material scale, a convolu-

tional neural network adopted to learn the scattering in the mechanical properties of polysilicon, 

induced by its morphology; at the device scale, two feed-forward neural networks, one adopted to 

upscale the mechanical properties while the other to learn a microstructure-informed mapping be-

tween the geometric imperfections induced by the microfabrication process and the effective re-

sponse of the movable part of the magnetometer. The data-driven models are linked through the 

physical model to provide a kind of hybrid solution to the problem. Results relevant to different 

neural network architectures are here discussed, along with a proposal to frame the approach as a 

multi-fidelity, uncertainty quantification procedure. 
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1. Introduction 

Most materials used in sophisticated technologies, such as in the case of MEMS, are 

characterized by a hierarchical internal structure with features at several length scales. 

These hierarchical structures completely determine their macroscale properties and per-

formance characteristics. Consequently, important efforts in the field of materials infor-

matics are put into developing novel data-driven approaches for mining high fidelity pro-

cess—structure—property (PSP) linkages from large collections of experimental, modeling, 

and simulation datasets [8]. Advancements in machine learning and data science ap-

proaches, have played a key role in accelerating microstructure quantification and feature 
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extraction tasks, based on several methods such as n-point spatial correlations (n-point 

statistics), for the micro-structural quantification and principal component analysis (PCA) 

for feature recognition [9–11]. Recently, deep learning approaches have facilitated the ex-

traction of higher-order feature information for the establishment of PSP links [12]. More-

over, spatial statistics can be combined with deep learning-based extracted features to 

build unified models, leading to improved accuracy in terms of properties prediction 

[13,14]. 

Building upon a formerly developed artificial neural network (NN)-based frame-

work, see [4–7], in this work we propose an improved methodology in terms of composi-

tion of the datasets, optimization of the architectural hyperparameters and overall train-

ing strategy. This data-driven protocol allows to account for material related uncertainties 

governing the performance of polycrystalline structures at the microscale, while incorpo-

rating microfabrication-induced geometric uncertainties, to produce accurate structure-

property mappings for a (single-axis) Lorentz force micro-magnetometer [2,3]. The re-

sponse of the device is characterized in terms of the maximum oscillation amplitude of its 

polysilicon resonant structure. 

The remainder of this work is organized as follows. Methodological details are dis-

cussed in Section 2. Results are reported and analyzed in Section 3. Finally, concluding 

remarks and insights for the future research work are collected in Section 4. 

2. Methodology 

2.1. Data-Driven Multiscale Approach 

Figure 1 provides a general description of the adopted model. Two approaches are 

proposed to address the upscaling of the mechanical property of interest, in this case the 

in-plane Young’s modulus �̅� of the polysilicon film. A homogenization procedure carries 

the information from the length scale of the squared h × h domains, representing stochastic 

volume elements (SVEs) in the Model 1, to the length scale of the resonant structure of the 

device, i.e., the scale of the polysilicon beam of size L × h in Model 2. Dataset 1 defines the 

set of values h while Dataset 2 defines a set of values L × h where n = L/h must be defined 

a priori and defines the size of the input layer of Model 2. Consequently, the combined 

use of Model 1 and Model 2 establishes a data-driven homogenization framework for all 

the possible beam geometries L × h for which L/h = n. In this work, Dataset 1 is composed 

by elements described by the set h = {2 µm, 3 µ m, 5 µ m and 10 µm} and n = 20 has been 

defined as the dimensionality of the input vector to Model 2. Moreover, only h = 2 µm has 

been considered for assembling the elements of Dataset 2, so that all the L × h structures 

correspond to samples featuring 40 µm × 2 µm. 

 

Figure 1. Overall model schematic, composed of three data-driven sub models to account for mate-

rial- and geometry-related uncertainties at different (termed material and device) length scales. 

The homogenization framework can therefore be exploited to produce microstruc-

ture-informed inference models for the polycrystalline structures, whose characteristic 

length scale is compatible with the scale defined by Model 2. This solution can be the case 
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for typical structures of MEMS devices. An example of it is represented by Model 3, which 

employs the output of Model 2, together with an additional variable (representing a mi-

crofabrication defect termed over-etch, 𝑂) as inputs to predict the maximum oscillation 

amplitude 𝜈𝑚𝑎𝑥 of the resonant structure in a Lorentz force MEMS magnetometer, lever-

aging available analytical models in [2,3] to generate the ground truth data. 𝑂 has been 

modeled according to the statistical distribution reported in [15,16].  

2.2. Implementation Details  

To find the optimal model architecture, a search space strategy is adopted and the 

KerasTuner hyperparameter optimization framework [17] is employed with Random-

Search as the tuning algorithm. To explore the search space, a maximum number of 50 

trials, with one execution per trial is established. Model 1 consists of a convolutional NN 

with the following arrangement of layers: 2D.Conv (filters = {32,64,96,128}, kernel_size = 

{3,5}) + Max.Pooling (pool_size = (2,2)) + 2D.Conv (filters = {32,64,96,128}, kernel_size = 

{3,5}) + Max.Pooling (pool_size = (2,2)) + Flatten followed by a single neuron output layer, 

Dense (units = 1). Adamax (learning rate = {0.01,0.001,0.0001}) has been selected as the 

optimizer. Here, values specified within curly brackets represent the elements of the as-

sociated search space. 

Similarly, both Model 2 and Model 3 consist of feed forward NN which feature an 

arrangement of 3 hidden layers of the type Dense (units = {50, 100, 150}), followed by a 

single neuron output layer Dense (units = 1). The same configuration for Adamax was 

used again. Moreover, mean squared error (MSE) loss function, batch size equal to 10 and 

early stopping with a patience equal to 50 were used in all the models.  

2.3. Input Data Generation 

2.3.1. Dataset 1 

Stochastic volume elements were digitally generated via the regularized Voronoi tes-

sellation procedure described in [18] and formerly adopted in [4–7]. Associated target val-

ues of the homogenized Young’s modulus �̅�𝑆𝑉𝐸  were obtained via standard FE simula-

tions. Exploiting the anisotropic elasticity of silicon [19], gray level values between 0 and 

1 encoded the in-plane lattice orientation of the crystalline domains, measured with re-

spect to a global reference axis. These squared h × h domains were representative of the 

texture of polysilicon thin films at the microscale. For the current work, a finite set of char-

acteristic values, namely h = {2 µm, 3 µm, 5 µm and 10 µm} was considered. Specifically, 

the same dataset reported in [7] for the training of the material-level neural network was 

adopted for the fitting and assessment of Model 1, only differing in the selection of a lower 

image resolution of 64 × 64 pixels, rather than the original 128 × 128 pixels. A comparison 

between these two resolutions is depicted in Figure 2.  

 

Figure 2. Pairs of images featuring original resolution (left) and reduced resolution (right), for all 

the considered values of h. 

To quantify the variation of information associated with the adopted resolution, the 

Kullback-Leibler divergence was computed to measure the distance between the discrete 

probability distributions of the pixel values for the images at larger and lower resolutions, 

respectively represented via P and Q. These distributions were obtained by normalizing 

the histograms of the pixel values. Specifically, the reverse KL i.e., KL(Q||P) was com-

puted, with Q regarded as an approximation of P. Results showed that even for the sam-

ples displaying the largest KL(Q||P) distance, an acceptable match of the modes of P was 

obtained by Q, thus validating the adopted image resolution adjustment.  
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2.3.2. Dataset 2  

As introduced in Section 2.1, Model 2 was trained based on a dataset composed of N 

samples of size L × h, where N = 1050, L = 40 µm and h = 2 µm, so that n = 20. At variance 

with former works [4–7], where each slender beam was considered as a concatenation of 

a single individual domain of size h × h; in the current work a microstructure was digitally 

generated for the entire geometry of the beam following the same procedure specified in 

Section 2.3.1. Figure 3 illustrates one of the generated beam microstructures, displaying a 

resolution of 64 × 1280 pixels.  

 

Figure 3. Exemplary 2 µm × 40 µm beam structure of Dataset 2. 

Each beam indexed by i (i = 1, 2, …, N) is partitioned into a set of j (j = 1, 2, …, n) 64 × 

64 pixels subdomains, that are fed to the already trained Model 1 to generate a vector of 

predictions that constitute the input of Model 2. Model 2 is trained to map the vector of 

predictions �̅�𝑖𝑗 from Model 1 into the homogenized Young’s modulus �̅�𝑖 of the entire 

beam structure. Additionally, following a format given by number of samples, mean and 

standard deviation of the target values, Dataset 2 was composed by: Training set = 800, 149.5 

GPa, 1.3 GPa, Validation set = 150, 149.6 GPa, 1.3 GPa, Test set = 100, 149.6 GPa, 1.4 GPa. An 

additional test set, namely, Test set 2 = 91, 145.0 GPa, 26.3 GPa, consisted of 91 additional 

data points simulating beams of a hypothetically homogeneous material (so that no real 

microstructures need to be generated), displaying values of Young’s modulus in the range 

[100 GPa, 190 GPa]. This set was used to assess the generalization capabilities of Model 2 

outside the range of target values characterizing the polysilicon beam microstructures, 

given by [144.9 GPa, 154.0 GPa]. 

2.3.3. Dataset 3  

To generate the ground truth data, i.e., the maximum oscillation amplitude 𝜈𝑚𝑎𝑥 of 

the resonant structure, this work relies on the analytical model of the single axis Lorentz 

force MEMS magnetometer derived in [3], accounting for the weakly coupled thermo-

electro-magneto-mechanical multi-physics governing the vibrations of the slender 

clamped-clamped resonant beam. The specific geometric parameters i.e., the length, 

width, and thickness of the beams, were respectively given by 40 µm, 2 µ m and 5 µ m and 

were considered in the analytical model to assemble Dataset 3, featuring: Training set = 

800, 1.67 nm, 0.032 nm, Validation set = 100, 1.67 nm, 0.029 nm, Test set = 100, 1.67 nm, 0.032 

nm.  

3. Results 

3.1. Homogenization of the Stochastic Volume Elements (SVE) 

Within the tested configurations from the search space, the best performing model 

was obtained for the combination of hyperparameters given by {128, 5, 128, 3, 0.0001}. 

With this configuration, Model 1 consisted of a total of 176,001 parameters. A very good 

performance was obtained for the homogenization at the SVE scale, improving the results 

reported in [7]. The obtained MSE values correspond to 0.2037 GPa2, 0.0907 GPa2, 0.0874 

GPa2, 1.4589 GPa2, 0.1802 GPa2 for the Training set (h = 2, 10 µm), Validation set (h = 2, 10 

µm), Test set 1 (h = 2, 10 µm), Test set 2 (h = 3 µm) and Test set 3 (h = 5 µm) sets, respec-

tively. 
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3.2. Homogenization of the Resonant Structure 

The best performing model was obtained for the combination of hyperparameters 

given by {50, 50, 50, 0.001}, resulting in an architecture with a total of 6201 fitting param-

eters for Model 2. Figure 4 illustrates the good agreement between predicted and ground-

truth data obtained by Model 2 on the test sets. The equation for the linear least squares 

(LLS) fitting of the predictions is reported in the parity plots, as well as the associated 

coefficient of determination R2. 

  

Figure 4. Performance of Model 2 on the test sets specified in Section 2.3.2. 

The absolute percentage error associated to the mean and standard deviation com-

puted from the set of predictions, corresponds to 0.0% and 7.7% for the Training set, 0.1% 

and 0.0% for the Validation set, 0.0% and 0.0% for the Test set and 0.28% and 0.0% for Test 

set 2. Moreover, the MSE values associated are 0.0222 GPa2, 0.0149 GPa2, 0.0163 GPa2 and 

0.1755 GPa2, respectively. These results confirm that Model 2 is capable to generate pre-

dictions consistent with an effective homogenization scheme, reproducing the trivial ex-

pected output for the simulated beams featuring hypothetical homogeneous materials. 

3.3. Maximum Oscillation Amplitude of the Lorentz Force MEMS Magnetometer 

The best performing model was obtained for the combination given by {50, 150, 50, 

0.01}. With these hyperparameters, Model 3 consists of a total of 15,401 fitting parameters. 

Figure 5 summarizes the performance of Model 3 on the test set, which can produce exact 

one-to-one predictions. In this case the MSE values associated to each of the sets corre-

spond to 2.099 × 10−8 nm2, 2.065 × 10−8 nm2, 1.966 × 10−8 nm2 for the Training, Validation, 

and Test sets, respectively.  

 

Figure 5. Performance of Model 3 on the test set specified in Section 2.3.3. 

4. Conclusions 

A data-driven modelling scheme was implemented and allowed the effective upscal-

ing of the properties across the identified hierarchy of length scales in MEMS devices, 

accounting for the microstructure of complex textured structural films (e.g., made of pol-
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ycrystalline materials). The proposed protocol can be readily exploited to model the re-

sponse of intricate systems, such as MEMS devices, by incorporating additional relevant 

variables as inputs of a device-level model, capable to learn complex structure-property 

mappings in a microstructure-informed data-driven manner. 

Future research activities will focus on adapting the proposed homogenization 

framework to become more general and therefore less constrained by the specific device 

geometry. 
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