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Abstract: With the invention of GPS and related technologies outdoor positional system is possible 

with great accuracy. However, there is still a need for efficient, reliable and less expensive 

technology for indoor navigation. There are lots of techniques which are used for indoor navigation 

such as acoustic, wifi-based, proximity-based, infraded systems and SLAM algorithms. In this 

study, it was tried to obtain an accurate position estimation by combining the acceleration and 

gyroscope data and the raw distance data with the help of the Extended Kalman Filter (EKF). 

Initially, a position estimation is obtained using the Recursive Least Square (RLS) method with a 

trilateration algorithm. This solution is used as a starting point for RLS. Here, the first solution point 

is updated as the initial solution for each distance data, and the result calculated by the RLS method 

is updated as the next solution. This approach enables the distance measurement and position 

estimation to be executed simultaneously and it avoids the unnecessary waiting time and speeds up 

the positioning estimation. After that, this position estimation is fused with the acceleration and 

gyroscope data. In order to test the designed algorithm, synthetic data was used. As a result of this 

tests, it has been observed that, this EKF structure created for indoor navigation gives accurate 

results. 
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1. Introduction 

Unmanned Aerial Vehicles have been widely used in military, industry, agricultural 

and other aspects such as aerial photography, air reconnaissance in recent years [1–3]. 

However, it is seen that all these specified areas are outdoors and they receive the GPS 

signal properly. Although, if there is no GPS signal or weak GPS signal, the positioning 

accuracy is directly affected. Nowadays, there is a great demand for UAV inspection 

based on indoor technology and it is related to with control optimization and path 

tracking. 

There are a lot of techniques for the indoor positioning such as vision based, lidar 

based, wi-fi based, Bluetooth based, UWB based and IMU based [4–6]. Motion capturing 

system which uses the multiple high speed cameras to obtain the relative position of the 

object however this system has also disadvantage of the complex layout and difficult 

calibration. VICON and OptiTrack are the examples of this system. The positioning 

accuracy can reach milimeter level but due to disadvantages of the system some 

simultaneous localization and mapping schemes have emerged such as Oriented FAST 

and Rotated BRIEF SLAM (ORB-SLAM) [7], semi-direct visual odometry (SVO) [8], direct 

sparse odometry (DSO) [9], which use a single monocular camera, or a binocular camera 

placed on the UAV body to get the relative position of the UAV in the environment. In 

addition, Gmapping [10], Hector [11] and Cartographer [12] are the examples of the lidar 

based positioning techniques. Due to its weight of the lidar which applied to the UAV is 
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generally a single line and it can only obtain the two-dimensional position of the UAV. 

Using Wi-Fi for indoor positioning is well established and its accuracy can reach a few 

meters [13]. Although, requirements in terms of the number of Wi-Fi access points 

associated with the costs and power consumption make this solution impossible without 

consistent retrofitting. Bluetooth low-energy (BLE) and Wi-Fi use the same frequency, but 

BLE is designed as a short range energy efficient communication protocol which allows 

the devices to communicate through the short messages [14]. BLE-based localization is 

typically performed by installing a set of proximity beacons at known locations. Receivers 

transmit the RSSI (distance form the sender) from the nearest beacons and calculates their 

own position using these values [15]. There are two categories for the BLE-based 

localization algorithm which are distance-based and fingerprinting-based [16]. Distance-

based algorithms directly translate RSSI values into the position coordinates. These 

methods require at least three RSSI measurements to estimate the position [17]. On the 

other hand, fingerprinting-based algorithms exploit a vector of RSSI measurements at 

known fingerprint positions to create a so-called reference fingerprint map (RFM). A 

machine learning regressor is then fed with the RFM data to create a relationship rule 

between new RSSI measurements and theircorresponding position estimates [18]. UWB 

positioning is light in weight, simple in layout, stable in positioning and the accuracy can 

reach to centimeter level [19,20]. Using only UWB cannot meet the requirements of indoor 

high precision operation. IMU is a common sensor for orientation estimation. Although, 

IMU estimates its position by integration, and this will be accumulated errors due to drift. 

In this paper, an accurate position estimation is calculated by combining the IMU and 

the raw distance data with the help of the Extended Kalman Filter (EKF). Initially, a 

position estimation is obtained using the Recursive Least Square (RLS) method with a 

trilateration algorithm. This solution, is used as a starting point for RLS. After, this 

position estimation is fused with the acceleration and gyroscope data. This algorithm 

simulations are performed in MATLAB environment. The average results show that the 

proposed algorithm gives accurate results with less than ten cm precision. 

2. Position Estimation Algorithm 

2.1. Geometric Approach 

A geometric approach has been put forward in the basis of the study. As shown in 

the figure below, three reference points are given B1(x1,y1,z1), B2(x2,y2,z2) and B3(x3,y3,z3) 

and d1,d2,d3 interval measurements up to point A are given. The determination of the 

coordinates of the point A is carried out by solving the system of quadratic equations. 

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2 = 𝑑1

2 

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2 = 𝑑2

2 

(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 + (𝑧 − 𝑧3)
2 = 𝑑3

2 

(1) 

 

Figure 1. Reference Points and Interval Measurements. 
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The system of equations given here can expressed as follows. 

(𝑥2 + 𝑦2 + 𝑧2) − 2𝑥1𝑥 − 2𝑦1𝑦 − 2𝑧1𝑧 = 𝑑1
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2 

(𝑥2 + 𝑦2 + 𝑧2) − 2𝑥2𝑥 − 2𝑦2𝑦 − 2𝑧2𝑧 = 𝑑2
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2 

(𝑥2 + 𝑦2 + 𝑧2) − 2𝑥3𝑥 − 2𝑦3𝑦 − 2𝑧3𝑧 = 𝑑3
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2 

(2) 

In addition to that, this expression can be shown in matrix form as below. 

[
1
1
1
   
−2𝑥1

−2𝑥2

−2𝑥3

   

−2𝑦1

−2𝑦2

−2𝑦3

  
−2𝑧1

−2𝑧2

−2𝑧3

] [

𝑥2 + 𝑦2 + 𝑧2

𝑥
𝑦
𝑧

] = [

𝑠1
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2

𝑠2
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2

𝑠3
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2

] (3) 

This matrix form generally can be expressed as follows. 

 𝐴0. 𝑥 = 𝑏0             x ∈ 𝐸 

𝐸 = { (𝑥0, 𝑥1, 𝑥2, 𝑥3)
𝑇𝜖     𝑥0 = 𝑥1

2 +𝑥2
2 + 𝑥3

2} 
(4) 

While looking at the solution set of this system, it can be seen that there are two 

different approaches. The first is that the points B1, B2 and B3 are not on the same straight 

line and the second one is that they are on the same straight line. 

Case 1. B1,B2 and B3 are not in a straight line 

In this case, the following propositions are true. Rank(A0) = 3 and dim(Kern(A0)) = 1. 

Then the general solution of (4) can be shown as: 

𝑥 =  𝑥𝑝 + 𝑡. 𝑥ℎ (5) 

where t is a real coefficient, it is seen that xp is the special solution of (4) and it is also the 

solution of the system 𝐴0. 𝑥 = 0, which is a homogeneous system at xh. The vectors xp and 

xh can be calculated using the Gaussian elimination method. 

𝑥𝑝 = (𝑥𝑝0,𝑥𝑝1,𝑥𝑝2,𝑥𝑝3)
𝑇 , 𝑥ℎ = (𝑥ℎ0,𝑥ℎ1,𝑥ℎ2,𝑥ℎ3)

𝑇 , 𝑥 = (𝑥0,𝑥1,𝑥2,𝑥3)
𝑇 (6) 

xp, xh and x is expressed as above. If we substitute these expressions in (6), we can obtain 

the expresions given below: 

𝑥0 = 𝑥𝑝0 + 𝑡𝑥ℎ0,    𝑥1 = 𝑥𝑝1 + 𝑡𝑥ℎ1 ,𝑥2 = 𝑥𝑝2 + 𝑡𝑥ℎ2  , 𝑥3 = 𝑥𝑝3 + 𝑡𝑥ℎ3 (7) 

By using the constraint x ∈ E, 

 𝑥𝑝0 + 𝑡𝑥ℎ0 = (𝑥𝑝1 + 𝑡𝑥ℎ1)
2 + (𝑥𝑝2 + 𝑡𝑥ℎ2)

2 + (𝑥𝑝3 + 𝑡𝑥ℎ3)
2 (8) 

𝑡2(𝑥ℎ1
2 + 𝑥ℎ2

2 + 𝑥ℎ3
2 ) + 𝑡(2𝑥𝑝1𝑥ℎ1 + 2𝑥𝑝2𝑥ℎ + 2𝑥𝑝3𝑥ℎ3 − 𝑥ℎ0) +  

𝑥𝑝1
2 + 𝑥𝑝2

2 + 𝑥𝑝3
2 − 𝑥𝑝0 = 0 

(9) 

This is a quadratic equation in the form 𝑎𝑡2  + 𝑏𝑡 + 𝑐 = 0 with the solutions. 

𝑡1/2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  (10) 

The solutions of the equation system can be shown below. 

 𝑥1 =  𝑥𝑝 + 𝑡1𝑥ℎ   , 𝑥2 = 𝑥𝑝 + 𝑡2𝑥ℎ (11) 

Case 2. B1,B2 and B3 are in a straight line 

Then the following propositions are true. Rank(A0) = 2 and dim(Kern(A0)) = 2. Then 

the general solution of (4) can be shown as: 

𝑥 =  𝑥𝑝 + 𝑡. 𝑥ℎ1 + 𝑘. 𝑥ℎ2 
 (12) 
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With real parameters t and k; xp is a particular solution of (4) and xh1 and xh2 are two 

solutions of the homogeneous system A0.x = 0. They are linearly independent solutions 

and form therefore a basis of Kern(A0). If there is more than three reference points the 

general solution can be found using the least square method as follows. 

�̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (13) 

The projection of p on the column space of A is 

𝑝 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇𝑏 (14) 

In this case, the coordinates of p in the Col (A) column space represent the �̂� solution. 

Although, if the measurements are uncorrelated but have different uncertainties, 

Weighted Least Squares (WLS) is used. In this case, the solution of �̂� is found with the 

help of the following expression. 

�̂� = (𝐴𝑇𝑉−1𝐴)−1𝐴𝑇𝑉−1𝑏 (15) 

This solution is used as a starting point for the Recursive Least Square (RLS). Let x0 

be the initial solution and by every incoming distance, x0 is updated in x1 by using the RLS. 

The approach enables distance measurement and positioning calculation to be executed 

simultaneously. Hence, a position assignment can be initiated, although not all distanced 

are known. This avoids the unnecessary waiting time and speeds up the positioning 

calculation. More detail for this approach can be discussed in [21]. Distance data is used 

together with the recursive least square algorithm to help to calculate the position. In the 

next section, the details of a more accurate position estimation with the help of EKF will 

be explained. Sensor fusion algorithm is used with accelerometer, gyroscope and distance 

data and the position is calculated. 

2.2. Sensor Fusion Algorithm 

There are lots of sensor fusion algorithms such as Feature Aggregation, Temporal 

Fusion, Support Vector Machine, Kalman Filter etc. Although, in this system Kalman Fiter 

is decided to use, to perform a more accurate position estimation. But Kalman filter gives 

good results in linear systems, but since there are very few linear systems in the real world, 

so the Extended Kalman filter is used, which gives better results in non-linear systems. 

The extended Kalman filter, solves this problem by calculating the Jacobian of F and H 

around the estimated states which in turn yields a trajectory of the model function around 

the stated. The details of EKF that is utilized in this work are presented. The nonlinear 

process model and noise used in EKF is as given 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) + 𝑤(𝑘) (16) 

In this equation, 𝑥(𝑘) and 𝑥(𝑘 + 1) represents the states of the system at 𝑘 and 𝑘 +

1, respectively. In addition, 𝑢(𝑘) and 𝑤(𝑘) represent the control signal and the process 

noise (in Gaussian distribution) respectively. The process is expressed by f(.). The 

measurement model, which relates the state variables to the measurements, is expressed 

with the following equation 

𝑧(𝑘) = ℎ(𝑥(𝑘)) + 𝑣(𝑘) (17) 

In this equation, ℎ(. ), 𝑣(𝑘) and 𝑧(𝑘) represents nonlinear measurement function, 

measurement noise (in Gaussian distribution) and measurements, respectively. In EKF, 

the filter gain is calculated in the same way as the linear Kalman Filter. For this reason, 

nonlinear process and measurement models are linearized around the current system 

states. This linearization is performed using the first terms of the Taylor series expansion 

of the function of interest. 
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𝑥(𝑘 + 1) ≈ �̃�(𝑘 + 1) + 𝐹(𝑥(𝑘) − �̃�(𝑘)) + Γ𝑤(𝑘) (18) 

The mean value of the noise is zero. (w = 0) 

�̃�(𝑘 + 1) ≈ 𝑓(𝑥(𝑘), 0) (19) 

The F matrix is the Jacobian matrix of the process function (𝑓) according to the states 

(𝑥). The Γ matrix is the Jacobian matrix of the process function with respect to the noise 

(𝑤). 

𝐹𝑖,𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗

|
(𝑥(𝑘+1),0)

    ,     Γ𝑖,𝑗 =
𝜕𝑓𝑖

𝜕𝑤𝑖

|
(𝑥(𝑘+1),0)

 (20) 

Similarly, the nonlinear measurement function is linearized around the predicted 

states 

𝑧(𝑘 + 1) ≈ �̃�(𝑘 + 1) + 𝐻(𝑥(𝑘 + 1) − �̂�(𝑘 + 1)) + Φ𝑣(𝑘 + 1) (21) 

The expected noise value is zero (v = 0): 

�̃�(𝑘 + 1) = ℎ(�̃�(𝑘 + 1), 0) (22) 

The H matrix is the Jacobian matrix ( 𝑥 ) according to the system states of the 

measurement function (ℎ). Likewise, the Φ matrix is the Jacobian matrix with respect to 

the measurement noise (𝑣) of the measurement function. General schematic of the EKF 

structure used in the system given as follows 

 

Figure 2. Sensor Fusion (EKF) Structure Schematic. 

State vector of the system is given as: 

𝑥 =

[
 
 
 
 
 
 
 
 
𝑝𝑜𝑠𝑥

𝑝𝑜𝑠𝑦

𝑝𝑜𝑠𝑧

𝑎𝑐𝑐𝑥

𝑎𝑐𝑐𝑦

𝑎𝑐𝑐𝑧

𝑔𝑦𝑟𝑜𝑥

𝑔𝑦𝑟𝑜𝑦

𝑔𝑦𝑟𝑜𝑧 ]
 
 
 
 
 
 
 
 

  (23) 

State transition of the system is given as: 
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𝐴 =

[
 
 
 
 
 
 
 
 
 1  
0
0
0
0
0
0
0
0

0  
1 
0
0
0
0
0
0
0

0   
0
1
0
0
0
0
0
0

𝑑𝑡  
0
0
1
0
0
0
0
0

0  
𝑑𝑡
0
0
1
0
0
0
0

0  
1
𝑑𝑡
0
0
1
0
0
0

𝑑𝑡2 2⁄  
0
0
𝑑𝑡
0
0
1
0
0

0 
𝑑𝑡2 2⁄

0
0
 𝑑𝑡
0
0
1
0

0 
0

𝑑𝑡2 2⁄
0
0
𝑑𝑡
0
0
1 ]

 
 
 
 
 
 
 
 

 (24) 

Measurement vector is given as: 

𝑧 =

[
 
 
 
 
 
 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎𝑐𝑐𝑥

𝑎𝑐𝑐𝑦

𝑎𝑐𝑐𝑧

𝑔𝑦𝑟𝑜𝑥

𝑔𝑦𝑟𝑜𝑦

𝑔𝑦𝑟𝑜𝑧 ]
 
 
 
 
 
 

 (25) 

The measurement noise covariance matrix, R, was determined based on the average 

noise levels of measurements. Assuming that the measurements are not correlated with 

each other, the diagonal matrix below is chosen. The standard deviation values of the 

measurements are calculated, and the measurement noise covariance matrix is decided by 

using these values. 

R = diag([r1 r2 r3 0 0 0 r7 r8 r9]) (26) 

Here, r1…r9 values are the distances of the beacon sensors from each other. The 

resulting process noise covariance matrix is as follows: 

𝑄 =

[
 
 
 
 
 
 
 
 
 0.01  

0
0
0
0
0
0
0
0

0  
0.01 

0
0
0
0
0
0
0

0   
0

0.0001
0
0
0
0
0
0

0  
0
0

0.25
0
0
0
0
0

0  
0
0
0

0.16
0
0
0
0

0  
0
0
0
0

0.01
0
0
0

0 
0
0
0
0
0

0.25
0
0

0 
0
0
0
 0
0
0

0.16
0

0 
0
0
0
0
0
0
0

0.01]
 
 
 
 
 
 
 
 

 (27) 

In the next section, the results obtained by applying the designed algorithm on the 

simulation will be explained. 

3. Simulation System and Results 

Matlab environment was used while creating the simulation system. Data was 

produced synthetically in Matlab and the algorithm was tested under the generated data. 

In addition, three different trajectories were used while generating synthetic data. These 

trajectories are shown in Table 1. In Figures 3–5, both the position calculations calculated 

with the trilateration algorithm alone and the position calculations obtained as a result of 

using the IMU data together with the trilateration and EKF algorithms are shown. The 

minimum, maximum and average error amounts of the calculated positions are shown in 

detail in Table 2. RMS value was used while generating error amounts. According to the 

simplicity and complexity of the determined trajectories, the error amounts obtained by 

using only the trilateration algorithm differ. For example, the error amounts of position 

estimation and position estimation obtained by using only the trilateration algorithm 

between Trajectory 1 and Trajectory 3 differ considerably. However, with the inclusion of 
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EKF in the calculation of position estimation, it is easily observed that the amount of error 

obtained decreases both in the relevant Figures 3–5 and in the values given in the Table 2. 

Table 1. Trajectories. 

Trajectory Name Beacon Number Trajectories 

Trajectory 1 5 
 

Trajectory 2 5 
 

Trajectory 3 5  

 

Figure 3. Position Estimation in Path 1 Trilateration Algorithm with and without EKF. 

 

Figure 4. Position Estimation in Path 2 Trilateration Algorithm with and without EKF. 
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Figure 5. Position Estimation in Path 3 Trilateration Algorithm with and without EKF. 

Table 2. Error Comparison Table. 

Trajectory Algorithm Min Error (m) Mean Error (m) Max Error (m) 

Trajectory 1 Trilateration Algorithm 0.073409 0.335606 0.994064 

Trajectory 1 Trilateration Algorithm + EKF 0.019016 0.061539 0.143751 

Trajectory 2 Trilateration Algorithm 0.077657 0.453345 1.768042 

Trajectory 2 Trilateration Algorithm + EKF 0.016976 0.082958 0.168863 

Trajectory 3 Trilateration Algorithm 0.353665 1.258376 5.003108 

Trajectory 3 Trilateration Algorithm + EKF 0.001041 0.083402 0.164720 

4. Conclusions 

In this study, position estimation was made by combining IMU and raw distance 

data with the help of Extended Kalman Filter (EKF). Simulation of the system is carried 

on MATLAB environment. Simulation result shows the proposed method gives the 

correct position in centimeter precision levels. First, a geometric solution method was 

used in the algorithm, then this method was combined with the EKF algorithm. When the 

results are examined, it is observed that the amount of error is quite high when only 

geometric approach is used. It has been seen that the position estimation has reached the 

desired level with the use of EKF as well as the geometric approach. In the future this 

designed algorithm will be tested with the real sensor data. If the obtained results are at 

the desired level, the integration of the algorithm into the UAV will be started. 
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