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Abstract: Affect recognition is a signal and pattern recognition problem that plays a major role in 

affective computing. The affective state of a person reflects their emotional state, which could be 

measured through the arousal and valence dimensions, as per the circumplex model. We attempt 

to predict the arousal and valence values by exploiting the Remote Collaborative and Affective In-

teractions (RECOLA) data set [1–3]. RECOLA is a publicly available data set of spontaneous and 

natural interactions that represent various human emotional and social behaviours, recorded as au-

dio, video, electrodermal activity (EDA) and electrocardiogram (ECG) biomedical signals. In this 

work, we focus on the biomedical signal recordings contained in RECOLA. The signals are pro-

cessed, accompanied with pre-extracted features, and accordingly labelled with their corresponding 

arousal or valence annotations. EDA and ECG features are fused at feature-level. Ensemble regres-

sors are then trained and tested to predict arousal and valence values. The best performance is 

achieved by optimizable ensemble regression, with a testing root mean squared error (RMSE) of 

0.0154 for arousal and 0.0139 for valence predictions. Our solution has achieved good prediction 

performance for the arousal and valence measures, using EDA and ECG features. Future work will 

integrate visual data into the solution. 
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1. Introduction 

Affect recognition (AR) is a signal and pattern recognition problem that plays a major 

role in affective computing [4]. Affective computing inspires the development of devices 

that are capable of detecting, processing, and interpreting human affective states. As such, 

AR is an interdisciplinary research area which includes signal processing, machine learn-

ing, psychology, and neuroscience. The affective state of a person reflects their emotional 

state [4,5]. AR is the process of detecting the affective state of a person by monitoring their 

activity and vital signs through sensors. Machines can detect/recognize affective states by 

analyzing physiological data, and/or audio-visual data [6,7]. 

Wearable sensors are sensors that can be worn on the human body or inserted into 

clothing. Most state-of-the-art studies rely on wearable sensors for their low-cost, rich 

functionality, and valuable insights [4]. Integrated wearable sensor applications can be 

used in daily lives as they are portable and non-intrusive. They can be used to measure 

physiological data such as electroencephalography (EEG), electrooculography (EOG), 

electrocardiography (ECG), electromyography (EMG), respiratory inductive 
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plethysmography (RIP), blood oxygen, blood pressure, photoplethysmography (PPG), 

temperature, electrodermal activity (EDA), inertia, position, voice, etc. Wearable-based 

AR systems can be used in healthcare applications to monitor the state of patients with 

mental disorders [4]. These data help therapists to track behavioural changes. AR systems 

facilitate tele-mental and tele-medical applications. They can enhance self-monitoring to 

provide users with better insights on their affective states and behavioural changes. AR 

systems are utilized in urban planning or human-machine interfaces as well. AR can also 

be based on audio-visual data, which depend on multimodal features. These features are 

extracted from images, audio, or video. The visual features used for AR include infor-

mation about facial expressions, eye gaze and blinking, pupil diameter, and hand/body 

gestures and poses [7]. Multimodal fusion is an extra step that is usually performed to 

combine multiple data modalities [6]. There are three types of multimodal fusion: early, 

late, and sequential fusion. Early fusion combines the modalities at the feature level, while 

late fusion combines the modalities at the decision level. Sequential fusion combines dif-

ferent modality predictions sequentially. We apply early, feature-level fusion in this work. 

Researchers have developed emotion models to describe humans’ affective states 

[4,6]. There are two types of emotion models: categorical, and dimensional models. In cat-

egorical models, discrete categories are used to express different emotions. In dimensional 

models, “emotions are mapped into a multidimensional space, where each of the axis rep-

resents a continuous variable.” The circumplex model is a dimensional model [4], pre-

sented by Russell in [8]. Within the circumplex model, affective states are characterized as 

discrete points in a two-dimensional space of valence and arousal axes. Valence is used to 

rate the positivity of the affective state. Arousal is used to rate the activity/energy level of 

the affective state. There are four quadrants in the circumplex model [1,9–11]: low 

arousal/low valence, low arousal/high valence, high arousal/low valence, and high 

arousal/high valence. They are attributed with the sad, relaxed, angry, and happy affec-

tive states, respectively. The circumplex model is used in this work. 

1.1. Data 

The application of AR requires a large amount of data, collected from a diverse group 

of subjects. Researchers have published data sets to enable the validation and comparison 

of results. The data sets can consist of posed, induced, and/or natural emotions. Data sets 

can be grouped based on content, data modality, and/or participants [6]. They are com-

posed of posed or spontaneous facial expressions, primary expressions or facial action 

units (FAU) as labels, still images or video sequences (i.e., static/dynamic data), and con-

trolled laboratory or uncontrolled non-laboratory environments.  

The remote collaborative and affective interactions (RECOLA) data set was recorded 

at the University of Fribourg, Switzerland, to study socio-affective behaviours from mul-

timodal data in the context of computer supported collaborative work [1–3]. Spontaneous 

and naturalistic interactions were collected during the resolution of a collaborative task 

that was performed in pairs and remotely through a video conference. This comprises of 

27 5-min synchronous audio, video, ECG and EDA recordings. Even though all subjects 

speak French fluently, they have different nationalities (i.e., French, Italian or German), 

which provides some diversity in the expression of emotion. The data were labelled in the 

arousal and valence affective dimensions, and manually annotated using a slider-based 

labelling tool. Each recording was annotated by six native French speakers. A combination 

of these individual ratings is used as ground truth label. The RECOLA data set is obtained, 

from [12], to assist in the analysis of continuous emotion dimensions, such as the arousal 

and valence dimensions. The RECOLA data set includes recordings of 27 subjects, where 

data from 23 subjects are publicly available. The recordings of only 18 subjects contain all 

types of data modalities (i.e., audio, video, ECG, and EDA), so we use the records of those 

18 subjects in our work. 
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1.2. State-of-the-Art on RECOLA 

The baseline results achieved by the individual models for the gold-standard emo-

tion sub-challenge (GES) in 2018’s audio/visual emotion challenge (AVEC) [13] are re-

ported in terms of Concordance’s correlation coefficient (CCC). For EDA, they achieved a 

CCC of 0.029 and 0.058 for arousal and valence predictions, respectively. For ECG, they 

achieved a CCC of 0.065 and 0.043 for arousal and valence predictions, respectively. These 

results are obtained through an emotion recognition system based on support vector ma-

chines (SVMs), used as static regressors. The End2You tool [14] is a toolkit for multimodal 

profiling that was developed by the Imperial College of London to perform continuous 

dimensional emotion labels of arousal and valence values. It utilizes raw audio, visual 

information (i.e., video), and physiological EDA and ECG signals as input. For ECG sig-

nals, it achieved a CCC of 0.154 for arousal, and 0.052 for valence. Brady et al. [15] utilized 

RECOLA’s physiological data and baseline features, as specified in AVEC 2016 [16], to 

apply regression over arousal and valence values, via a long short-term memory (LSTM) 

network. For ECG, they achieved a root mean squared error (RMSE), Pearson’s correlation 

coefficient (PCC), and CCC of 0.218, 0.407, and 0.357 at predicting arousal values, respec-

tively. They achieved a RMSE, PCC, and CCC of 0.117, 0.412, and 0.364 at predicting va-

lence values, respectively. For EDA, they achieved a RMSE, PCC, and CCC of 0.250, 0.089, 

and 0.082 at predicting arousal values, respectively. They achieved a RMSE, PCC, and 

CCC of 0.124, 0.267, and 0.177 at predicting valence values, respectively. 

1.3. Proposed Solution 

This work is part of a larger interdisciplinary initiative with the Royal Hospital’s In-

stitute of Mental Health Research in Ottawa, the Department of Psychiatry of the Univer-

sity of Ottawa, and the Department of Psychoeducation and Psychology at the University 

of Quebec in Outaouais (UQO). It is aimed at the design and development of a novel 

adaptable intervention to treat cognitive impairments using virtual reality (VR), based on 

synergistic computer science and psychology approaches. A novel machine learning ap-

proach using visual and physiological sensory data is required to adaptively adjust the 

virtual environment to the user’s cognitive effort. Our ultimate goal is to automatically 

optimize the level of cognitive effort requested by VR users, while avoiding discourage-

ment. In that case, AR will help determine the user’s emotion and/or cognitive state. This 

paper presents the first milestone of this larger project. We aim to test an initial multi-

sensory system through classical and deep machine learning techniques that we could 

later use to improve the measurement of mental/cognitive states in VR. Figure 1. displays 

a high-level diagram of our proposed solution. It is composed of subsystems; one system 

for each data modality, namely the visual (video) and physiological (EDA and ECG) data 

modalities. 

 

Figure 1. Overview of Proposed Solution. 

We chose to focus on one data modality at a time to perfect the results for each mo-

dality first, before we combine all modalities in our final system. In this work, we operate 

on physiological data from RECOLA’s biomedical signal recordings of EDA and ECG. We 

exploit multiple ensemble regression methods for the purpose of predicting continuous 
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dimensional emotion annotations in terms of arousal and valence values. We use early 

fusion to combine the EDA and ECG modalities at the feature level. We are going to work 

with the other data modalities, contained within RECOLA, at later stages of the project. 

We initially use data from RECOLA as a proof-of-concept mechanism. In the future, we 

will operate on real data that we will collect in our laboratory. 

2. Methods 

As further presented in this section, we process the biomedical signal recordings and 

label them. Then, we perform continuous dimensional emotion predictions of arousal and 

valence values, through classical machine learning techniques. Specifically, we experi-

ment with ensemble regression. We choose to work with ensemble models because they 

are known to be fast and effective [17]. 

2.1. Processing of Biomedical Signals 

In our work, RECOLA recordings of 18 subjects are used for training and validation, 

as well as testing purposes. All records are preprocessed by applying (1) time delay, (2) 

early features fusion, (3) arousal and valence annotation labelling, and (4) data shuffling 

and splitting. 

2.1.1. Time Delay and Sequencing 

RECOLA’s biomedical recordings (i.e., EDA and ECG) are sampled at a rate of 1000 

samples/s. This means that one sample is captured every 1 ms. On the other hand, 

RECOLA’s audio and video recordings are sampled every 40 ms (25 frames/s). Similarly, 

the biomedical features are calculated every 40 ms as well. To enable a synchronous use 

of data, we subsampled the EDA and ECG signals by considering only the readings that 

occur every 40 ms. However, the corresponding EDA and ECG features in RECOLA, are 

only calculated after 2 s (2000 ms) of recording. Therefore, we skipped the readings that 

are collected before that time. As a result, the first 50 samples (2 s × 25 samples/s) of the 

recordings are discarded. 

2.1.2. Early Features Fusion 

We utilize the baseline EDA and ECG features of RECOLA, as described in [16]. Skin 

conductance response (SCR) is EDA’s rapid, transient response, whereas skin conduct-

ance level (SCL) is EDA’s slower, basal drift. In [16], both SCR and SCL are extracted from 

the EDA signal through a third order Butterworth filter, at different cut-off frequencies. 

In addition to the EDA readings, there are 62 EDA features, which include slope; fast Fou-

rier transform (FFT) entropy and mean frequency of the SCR; mean, its first order deriva-

tive, and the negative part of its derivative for EDA, SCR, and SCL; standard deviation, 

kurtosis, and skewness of EDA, SCR, and SCL; proportion of EDA, SCR, and SCL; x-

bound of EDA, SCR, and SCL; non-stationary index (NSI) and normalized length density 

(NLD) of EDA, SCR, and SCL; and deltas of all of the above. Besides the ECG readings, 

there are 54 ECG features, which consist of heart rate and heart rate variability; zero-cross-

ing rate; first 12 FFTs; entropy, mean frequency, and slope of ECG’s FFT; the first four 

statistical moments (mean, standard deviation, kurtosis, skewness); NSI and NLD; power 

at very low, low, high, and low/high frequencies; and deltas of all of the above. We fused 

the EDA and ECG features together into one matrix that is 132,751 × 118 (1 EDA reading 

+ 1 ECG reading + 62 EDA features + 54 ECG features) in size. 

2.1.3. Annotation Labelling 

The data in RECOLA are labelled in the arousal and valence affective dimensions, 

and manually annotated using ANNEMO, a web slider-based annotation tool. Each re-

cording was annotated by six native French speakers. The average of these six ratings is 

used to label the data in our work. These arousal and valence annotations are also sampled 
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every 40 ms. Again, as we proceeded in Section 2.1.1., the first 50 annotations are ignored. 

The remaining annotations are accordingly used to label the corresponding EDA and ECG 

samples. All labelling and fusion of data samples and features are done based on the re-

cordings time. 

2.1.4. Data Shuffling and Splitting 

Data shuffling is necessary to ensure the randomization and diversity of the data. 

The data are shuffled and split, where 80% are used for training and validation, and 20% 

are used for testing. Table 1 displays the dimensions of the data sets we used.  

Table 1. Summary of Data Sets. 

Data Set Samples EDA ECG Final Dimensions 

Training  106,201 1 EDA reading + 62 features 1 ECG reading + 54 features 106,201 × 118  

Validation  5-fold cross validation on training data 

Testing 26,550 1 EDA reading + 62 features 1 ECG reading + 54 features 26,550 × 118 

2.2. Ensemble Regression 

We exploit classical machine learning methods to perform continuous dimensional 

emotion predictions of arousal and valence values. We trained and validated three en-

semble regressors, namely boosted trees, bagged trees, and an optimizable ensemble. 

Boosted trees represent an ensemble of regression trees using the LSBoost algorithm [17]. 

Bagged trees represent a bootstrap-aggregated ensemble of regression trees. An optimi-

zable regression ensemble optimizes training hyperparameters (method, number of learn-

ers, learning rate, minimum leaf size, and number of predictors) using Bayesian optimi-

zation. We performed 5-fold cross validation during training to protect against overfitting, 

and computed the average validation error over all folds. 

3. Results and Discussion 

After training the aforementioned models, we tested them by predicting the arousal 

and valence values on the testing sets to evaluate the performance when presented with 

new data. Table 2 summarizes the validation and testing results in terms of the RMSE, 

PCC, and CCC performance measures. The RMSE simply measures the root of the mean 

of squared difference between the set of arousal/valence predictions and the set of the 

actual values [16,17]. PCC measures the linear correlation between the set of arousal/va-

lence predictions and the set of the actual values. CCC measure combines PCC with the 

square difference between the mean of the set of arousal/valence predictions and the set 

of the actual values. A smaller RMSE value represents better performance, whereas larger 

PCC and CCC values represent better performance. 

Table 2. Regression Results. 

Prediction Regressor Validation RMSE Testing RMSE, PCC, CCC 

Arousal 

Boosted Trees 0.16308 0.1631, 0.5889, 0.3865 

Bagged Trees 0.026374 0.0220, 0.9952, 0.9932 

Optimizable Ensemble 0.019022 0.0154, 0.9976, 0.9967 

Valence 

Boosted Trees 0.10631 0.1064, 0.6374, 0.5080 

Bagged Trees 0.018428 0.0147, 0.9955, 0.9938 

Optimizable Ensemble 0.01622 0.0139, 0.9954, 0.9946 

In Table 2, the validation results are computed through 5-fold cross validation over 

the training data. The testing results are obtained by having the trained model predict 

arousal and valence values on the testing set. The row corresponding to the highest pre-

diction performance is displayed in bold font in Table 2. According to Table 2, the 
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optimizable ensemble regressor outperforms the other models. For arousal predictions, it 

achieves a RMSE, PCC, and CCC of 0.0154, 0.9976, and 0.9967, respectively. For valence 

predictions, it achieves a RMSE, PCC, and CCC of 0.0139, 0.9954, and 0.9946, respectively. 

These results are better than any results, reported on RECOLA, in other state-of-the-art 

studies as far as we know. Table 3 compares our results with some results from literature. 

Table 3. Results Comparison. 

Prediction Input RMSE PCC CCC 

Arousal 

Optimizable Ensemble 0.015 0.998  0.997 

EDA LSTM [15] 0.250 0.089 0.082 

ECG LSTM [15] 0.218 0.407 0.357 

EDA Baseline [13] - - 0.029 

ECG Baseline [13] - - 0.065 

Valence 

Optimizable Ensemble 0.014 0.995  0.995 

EDA LSTM [15] 0.124 0.267 0.177 

ECG LSTM [15] 0.117 0.412 0.364 

EDA Baseline [13] - - 0.058 

ECG Baseline [13] - - 0.043 

4. Conclusions 

In conclusion, we preformed continuous dimensional emotion predictions by ex-

ploiting the RECOLA data set. More specifically, we focused on the EDA and ECG record-

ings of RECOLA, and their features. The signals were processed, accompanied with pre-

extracted features, and accordingly labelled with their corresponding arousal or valence 

annotations. Multiple regressors were trained, validated, and tested to predict arousal and 

valence values. We applied feature fusion to combine EDA and ECG features. The best 

performance was achieved by optimizable ensemble regression, with a testing RMSE, 

PCC, and CCC of 0.0154, 0.9976, and 0.9967 on arousal predictions; and 0.0139, 0.9954, and 

0.9946 on valence predictions. To the best of our knowledge, these results provide the best 

arousal and valence predictions’ performance as compared to the literature. Going for-

ward, we will carry out our project with the optimizable ensemble as the AR mechanism 

for physiological data. Now, that we have attained good prediction performance for the 

EDA and ECG data modalities, we can proceed our work with the visual data. Then, we 

can apply our findings on real data, which will be part of a VR system. 
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