9th International Electronic Conference on Sensors and Applications

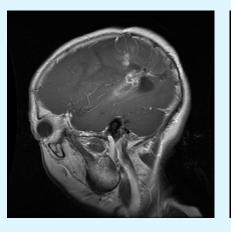
Multiclass Classification of Brain Tumors with Various Deep Learning Models

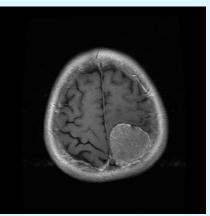
Fatih Uysal¹ · f Metehan Erkan² ·

¹ Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars TR 36100, Turkey ² Department of Electrical and Electronics Engineering, Faculty of Engineering, Gazi University, Ankara TR 06570, Turkey

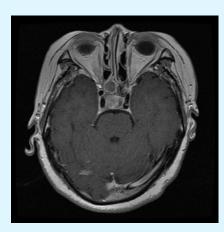
Fatih Uysal¹ · fatih.uysal@kafkas.edu.tr

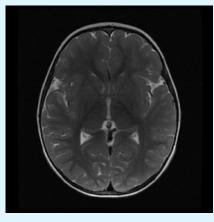
Metehan Erkan² · metehan.erkan@gazi.edu.tr




Brain Tumors Primary & Secondary Malignant & Benign

Open-Source Kaggle Brain Tumor Datasets


Multiclass Image Classification


Glioma Tumor

Meningioma Tumor

Pituitary Tumor

No Tumor

ResNet RegNet Vision Transformer

Researcher

Rajat et. al. Jianfeng et. al. Javed et. al. Arshia et. al. Mohamed et. al.

Classification Type

Binary Multiclass Multiclass Multiclass Binary

Model Used

AlexNet VGG19 Inceptionresnet v2 VGG16 MobileNet v2 Accuracy

99.04% 94.82% 98.91% 98.69% 98.24%

Dataset

TCIA CE-MRI Kaggle Figshare Custom Ds.

DATASETS

Dataset

Dataset 1 Dataset 2

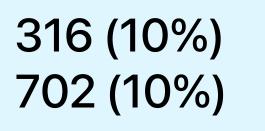
Train Split

2528 (80%) 5619 (80%)

4 Classes

Various Sizes

No Tumor Meningioma Glioma Pituitary



Validation Split

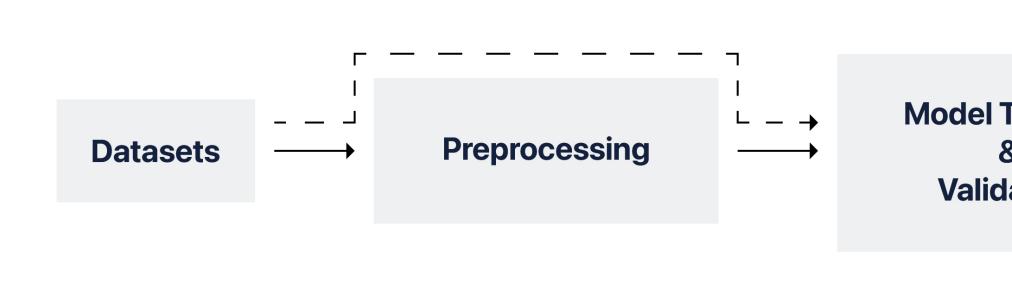
Test Split

Total

316 (10%) 702 (10%)

3160 7023

Random Split





MODELS

RegNet ResNet

Fully Connected Layers (Heads) customized Output Features = Number of Classes

Vision Transformer

Predicted Classes Model Training Calculation of Accuracy & & **Other Metrics** Validation

RESULTS

DATASET 1 (without CLAHE)

Model

Accuracy

ResNet50 RegNetY_16GF ViT_L_16 **95.253%** 93.354% **95.253%**

DATASET 2 (without CLAHE)

Model

Accuracy

ResNet50 RegNetY_16GF ViT_L_16

99.43% 99.145% 99.003%

DATASET 1 (with CLAHE)

Model

Accuracy

ResNet50 RegNetY_16GF ViT_L_16 94.937% **96.519%** 95.57%

DATASET 2 (with CLAHE)

Model

Accuracy

ResNet50 RegNetY_16GF ViT_L_16 **99.288% 99.288%**98.86%

CONCLUSION

In the scope of this work, MR brain images are classified with various deep learning models, and it is observed that the Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocess has positive effects on some of the models and datasets. Classification results are highly dependent on used dataset and deep learning model.

In future work, a hybrid system can be developed to assist physicists who are working in this field. Machine learning (ML) algorithms can be an addition to deep learning models in this system.

