

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

Nanoformulation With a Cationic Copolymer Enhanced the Antibacterial Activity of a Weakly Active Pyrazole

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Silvana Alfei ^{1,*}, Debora Caviglia ², Alessia Zorzoli ³, Danilo Marinpietri ³, Chiara Brullo ¹, Gian Carlo Schito ², Anna Maria Schito ²

¹ Department of Pharmacy (DIFAR) University of Genoa, Italy;

² Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Italy;
³ Cell Factory, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

* Corresponding author: alfei@difar.unige.it

Nanoformulation With a Cationic Copolymer Enhanced the Antibacterial Activity of a Weakly Active Pyrazole

ECMC 2022

Abstract:Molecules containing the pyrazole nucleus are promising candidates for the development of new antimicrobial compounds against multidrug resistant (MDR) bacteria no longer inhibited by available antibiotics. Recently, aiming at improving the excessive minimum inhibitory concentrations (MICs) of a pyrazole hydrochloride (CB1H), we prepared CB1Hloaded nanoparticles (CB1H-P7 NPs) using a potent cationic bactericidal macromolecule (P7) as polymer matrix. Here, CB1H-P7 NPs have been tested on 36 MDR clinical isolates of Grampositive and Gram-negative species, finding MICs even lower than those of P7 (0.6-4.8 µM vs. 1.2-9.3 µM). Additionally, upon complexation, the antibacterial effects of pristine CB1H were improved by 2-16.4-fold, as desired. Furthermore, 24 hours time-killing experiments have established that CB1H-P7 NPs possess rapid bactericidal effects against representative strains of both Gram-positive and Gram-negative species, such as methicillin-resistant *Staphylococcus* aureus (MRSA), MDR Pseudomonas aeruginosa, including a colistin-resistant isolate, and carbapenemases-producing Escherichia coli and Klebsiella pneumoniae. Selectivity indices up to 2.4 were determined by cytotoxicity experiments on human keratinocytes (HaCaT), thus suggesting that CB1H-P7 NPs could be promising candidates for therapeutic uses in the treatment of infections sustained by most dangerous MDR isolates tested in this study.

Keywords: CB1H-loaded copolymer NPs; cytotoxicity to human cells; Gram-positive and Gramnegative MDR isolates; MICs and MBCs; pyrazole compounds; selectivity index; time-kill experiments.

ECMC 2022

Introduction

Drug resistance is a multifactorial phenomenon that limits the action of antibiotics

The pyrazole ring is known to have numerous biological activities, including antimicrobial effects

Infections caused by the MDR, XDR, or even PDR bacteria are a global concern because they are nearly untreatable

Conventional antibiotics are no longer effective and need to be replaced with new antibacterial agents suitable for clinical application.

ECMC 2022

Commercial Drugs Containing Pyrazoles

ĊN

CI

SO₂NH₂

CH₃

Celecoxib Anti-inflammatory

F₃C,

CDPPB Anti-psychotic Lonazolac Anti-inflammatory

 H_3C

OH

Mepirizole Anti-Inflammatory

CH₃

HNT

 NH_2

Rimodabant Anti-obesity

Fezolamine Anti-depressant

N-

Betazole H2-receptor agonist Difenamizole Analgesic

ЕСМС 2022

Pyrazole Used in This Study

HO

NH₂⁺CI

[3-(3,5-Diphenyl-pyrazol-1-yl)-2-hydroxy-propyl]-isopropylammonium; chloride

ECMC 2022

 ✓ Well Water-Soluble
✓ Weak Antibacterial Effects on Gram-positives
(MICs = 128-256 µg/mL)
✓ No Antibacterial Activity on Gram-negatives

Nanomaterials 2022, https://doi.org/10.3390/nano12071215

ECMC 2022

01-30 NOVEMBER 2022 | ONLINE

In this study, CB1H-P7 NPs have been tested on several clinical isolates of Gram-positive and Gram-negative species, including MDR strains, observing high improvements in the antibacterial properties of both CB1H and P7 by a complex-based cooperation, and strong bactericidal effects already after 1 h of exposure. Particularly, very low MICs were observed for CB1H-P7 NPs, thus establishing that when complexed, P7 was 2-fold more potent that P7 alone against all bacteria tested, while CB1H was 2– 16-fold and 4–33-fold more potent than pristine CB1H against Gram-positive and Gram-negative bacteria respectively.

Conjecturing a possible clinical use of CB1H-P7 NPs, cytotoxicity experiments on human keratinocytes (HaCaT) were performed with P7, CB1H and CB1H-P7 NPs. Even if both P7 and CB1H-P7 NPs manifested values of LD₅₀ lower than that of pristine CB1H, the selectivity indices (SIs) determined for all bacteria for both compounds were significantly higher than those of CB1H and SIs of CB1H-P7 NPs were higher than those of P7 for the most part of bacteria tested in this study.

ЕСМС 2022

Results and discussion

Antibacterial Effects on Gram-positives

	Original P7 (13 719) ¹	Original CB1H (371 9) ²	CB1H-P7 NPs (26624) ¹	Complexed P7 (13 719) 1	Complexed CB1F (371.9) ²
Strains	MIC	MIC	MIC	MIC	MIC
	μM (μg/mL)	μM (μg/mL)	μM (μg/mL)	μM (μg/mL)	μM (μg/mL)
			Enterococcus genus		
E. faecalis 1*,#	2.3 (32)	344.2 (128)	1.2 (32)	1.2 (16.4)	41.9 (15.6)
<i>E. faecalis</i> 365*	2.3 (32)	344.2 (128)	2.4 (64)	2.4 (32.9)	83.6 (31.1)
<i>E. faecalis</i> 450*	2.3 (32)	344.2 (128)	2.4 (64)	2.4 (32.9)	83.6 (31.1)
E. faecium 21*	1.2 (16)	344.2 (128)	1.2 (32)	1.2 (16.4)	41.9 (15.6)
E. faecium 325*	1.2 (16)	344.2 (128)	0.6 (16)	0.6 (8.2)	21.0 (7.8)
E. faecium 341*,#	1.2 (16)	344.2 (128)	0.6 (16)	0.6 (8.2)	21.0 (7.8)
			Staphylococcus genus	OT CERLAR	
S. aureus 18**	4.6 (64)	344.2 (128)	2.4 (64)	2.4 (32.9)	83.6 (31.1)
S. aureus 187**	4.6 (64)	344.2 (128)	4.8 (128)	4.8 (65.8)	167.2 (62.2)
S. aureus 195**	4.6 (64)	344.2 (128)	2.4 (64)	2.4 (32.9)	83.6 (31.1)
. epidermidis 22**	1.2 (16)	344.2 (128)	0.6 (16)	0.6 (8.2)	21.0 (7.8)
epidermidis 180 <u>***</u>	1.2 (16)	344.2 (128)	1.2 (32)	1.2 (16.4)	41.9 (15.6)
epidermidis 181***	1.2 (16)	344.2 (128)	0.6 (16)	0.6 (8.2)	21.0 (7.8)

¹ Average molecular mass (Mn); ² MW; ³ refers to CB1H-P7 NPs; * denotes vancomycin resistanCE (VRE), *, #VRE resistant also to teicoplanin; ** denotes methicillin resistanCE; *** denotes resistance toward methicillin and linezolid.

есмс 2022

S. S.

Antibacterial Effects on Gram-negatives

	Original P7 (13,719) ¹	Original CB1H (371.9) ²	CB1H-P7 NPs (26624) ¹	Complexed P7 (13,719) ¹	Complexed CB1H (371.9) ²	¹ average molecular mass (Mn); ² MW; ³
Churchen	MIC	MIC	MIC	MIC	MIC	refers to CB1H-P7 NPs;
Strains	μM (μg/mL)	(µg/mL)	μΜ (μg/mL)	μM (μg/mL)	μM (μg/mL)⁴	# denotes KPCs-
			Enterobacteriaceae family	and the		producing isolates: §
E. coli 238 #	4.6 (64)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	denotes New Delhi
E. coli 477#	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	motallo
E. coli 462§	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	
K. pneumoniae 375#	4.6 (64)	>688.4 (>256)	4.8 (128)	4.8 (65.8)	167.2 (62.2)	carbapanemases
K. pneumoniae 376#	9.3 (128)	>688.4 (>256)	9.6 (256)	9.1 (124.4)	35.4 (131.6)	(NDIVIS) producing
K. pneumoniae 377#	9.3 (128)	>688.4 (>256)	4.8 (128)	4.8 (65.8)	167.2 (62.2)	isolate; P. aeruginosa, S.
K. pneumoniae 490 CR,#	4.6 (64)	>688.4 (>256)	<u>2.4 (64)</u>	2.3 (32.9)	83.6 (31.1)	<i>maltophilia</i> and <i>A</i> .
E. aerogenes 484##	4.6 (64)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	<i>baumannii</i> were all
		0.07	Non-fermenting species			MDR bacteria; 1V, 5V,
A. baumannii 257	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	6V, 7G = MDR strains
A. baumannii 279	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	isolated from patients
A. baumannii 245 ^{COR}	9.3 (128)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	with cystic fibrosis: CR =
				1		MDR (P geruginosa) or
P. aeruginosa 1V##	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	KPCs_producing (K
P. aeruginosa 5V##	4.6 (64)	>688.4 (>256)	2.4 (64)	2.3 (32.9)	83.6 (31.1)	nnoumonico) strains
P. aeruginosa 6V##	4.6 (64)	>688.4 (>256)	2.4 (64)	2.3 (32.9)	83.6 (31.1)	preumonide) strains
P. aeruginosa 7G##	4.6 (64)	>688.4 (>256)	2.4 (64)	2.3 (32.9)	83.6 (31.1)	resistant also to collstin;
P. aeruginosa 265 CR,##	≥18.6 (≥256)	>688.4 (>256)	<u>1.2 (32)</u>	1.2 (16.5)	41.9 (15.6)	py pyomelanin
P. aeruginosa 432 py,##	1.2 (16)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	producers; * resistant to
P. aeruginosa 447 ^{py,} ##	4.6 (64)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	the combination
P. aeruginosa 244 ^{py,} ##	4.6 (64)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	avibactam-ceftazidime;
P. aeruginosa 259*,##	9.3 (128)	>688.4 (>256)	9.6 (256)	9.1 (124.4)	35.4 (131.6)	## resistant to
	100				1000 C	carbapenems; ^{COR} co-
S. maltophilia 2 ^{coi}	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	trimoxazole resistant;
S. maltophilia 280 ^{COI}	4.6 (64)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	col co-trimoxazole
S. maltophilia 384 ^{COR}	2.3 (32)	>688.4 (>256)	1.2 (32)	1.2 (16.5)	41.9 (15.6)	intermediate
S. maltophilia 390 ^{COR}	2.3 (32)	>688.4 (>256)	2.4 (64)	2.3 (32.9)	83.6 (31.1)	

есмс 2022

Time-Killing Curves and Bactericidal Effects on Representative MDR Isolates of Gram-positive and Gram-negative Species

Cytotoxicity of P7, CB1H and CB1H-P7 NPs on HaCaT Human Keratinocytes Cells

The statistical significance of differences between experimental and control groups was determined via a twoway analysis of variance (ANOVA) with the Bonferroni correction. Asterisks indicate the following p-value ranges: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

LD₅₀ and Sis of P7, CB1H and CB1H-P7 NPs

		R ²	LD ₅₀ (μΜ)	SI	
Sample	Equations			Gram- positive	Gram- negative
P7	y = -25.7640x + 103.4	0.8972	2.1	0.5-1.8	0.1-1.8
CB1H	y = -0.6059x + 84.712	0.8648	57.3	≤0.4.	≤0.2.
CB1H-P7 NPs	v = -31.0430x + 94.949	0.9842	1.5	0.3-2.4	0.2-1.3

Conclusions

- CB1H-P7 NPs previously prepared were evaluated in vitro for assessing their antibacterial effects, for investigating their cytotoxicITY profile, and for determining their selectivity indices (SIs).
- CB1H-P7 NPs were essayed on 36 MDR clinical isolates, including different genera of Grampositive and Gram-negative species obtaining excellent results. The antibacterial potency ranged from being considerable (MIC = 4.8 μM) to very potent (MICs = 0.6-2.4 μM) against 34 out of 36 isolates tested.
- CB1H-P7 NPs displayed very low MICs against colistin-resistant isolates of *P. aeruginosa* (1.2 μM) and *K. pneumoniae* (2.4 μM), currently untreatable by the presently available antibiotics.
- CB1H-P7 NPs were effective against an isolate of *E. coli* producing NDM β-lactamases, which are capable to hydrolyse all β-lactam antibiotics except for aztreonam and against which no approved inhibitor works.

ECMC 2022

Conclusions

- Time kill experiments carried out on different MDR strains of *P. aeruginosa, S. aureus, E. coli,* and *K. pneuomniae*, evidenced that after 24 h of exposure, CB1H-P7 NPs were capable of killing all bacteria tested.
- Dose-dependent cytotoxicity studies performed for 24 hours on human keratinocyte cells (HaCaT) and the determination of the relative SIs of CB1H-P7 NPs, showed that, by complexing CB1H with P7, not only the antibacterial effects of both the ingredients (CB1H and P7) were improved, but also their SIs.
- CB1H-P7 NPs have SIs up to 3.3-fold higher than those of P7 and up to 6.5-fold higher than those of BC1H.

Future Perspectives

Although further investigations are needed to evaluate the actual clinical applicability of CB1H-P7 NPs developed here, the preliminary results obtained in this study suggest that they may be used in the future as powerful new agents capable of rapidly killing even the most alarming MDR bacteria and to cure difficult-to-treat bacterial infections.

ЕСМС 2022