

Marie Hanot^{(1)*}, Elodie Lohou⁽¹⁾, Pascal Sonnet⁽¹⁾

(1) Université de Picardie Jules Verne (UPJV), AGIR UR 4294, UFR de pharmacie, 1 rue des Louvels, 80000 Amiens, France. * marie.hanot@u-picardie.fr

A new therapeutic anti-virulence strategy against Pseudomonas aeruginosa

P. aeruginosa

Nosocomial opportunistic gram-negative bacillus responsible for lung, bloodstream, skin, ocular and urinary tract infections

UNIVERSITÉ

Yern

e Picardie

ules

- Major cause of chronic and lethal infections in cystic fibrosis patients ¹
- Part of the ESKAPEE group of multi-drug resistant bacteria designated by the WHO as a priority for the development of new treatments

Pathogenicity :

- Formation of persistent biofilms that act as protective barriers against the immune system and antibacterial agents

A pool of targets for the development of anti-virulence agents (AVAs) is the **Quorum Sensing** : a bacterial communication network responsible for virulence pathway expression according to the population density. In P. aeruginosa specific quorum sensing system pqs, the transcription factor PqsR regulates the activation of virulencerelated genes via recognition of its auto-inducer PQS (Pseudomonas Quinolone Signal). This circuit stimulates the secretion of virulence factors like pyocyanin as well as the establishment of biofilms. Therefore, the design of AVAs that inhibit PqsR appears to be a sustainable strategy to combat *P. aeruginosa* specifically (Fig. 2).^{3,4}

Figure 1: New anti-virulence strategy vs conventional antibiotic approach

Figure 2: Development of 2-heteroaryl-4-aminoquinolines as new AVAs

Several **bi-aromatic PqsR inhibitors** have been described in the literature. Among them, the compounds M64 and SPR-00305 are currently in preclinical stage.^{5,6} Moreover, our team designed a series of 2-heteroaryl-4-quinolones and discovered the hit AVA I. Another recently reported building block II possessing an aminoquinoline moiety displays interesting anti-virulence properties.⁷ By structural analogy, we aim to develop a new family of 2-heteroaryl-4-aminoquinoline hybrids as new AVAs potentially inhibiting PqsR.

			4b: $n = 2,55\%$										
Y f j s	Suzuki cross-coupling		4c: n = 3 <i>, 56%</i> 4d: n = 4 <i>, 71%</i>				Key aminoquinoline hybrids				Final products		
✓ N Br 1	reaction		4e: n = 5 <i>, 78%</i>	NHBoc	NH ₂	X	Y	n	5	Yield (%)	6	Yield (%)	Purity* (%)
Y = 7-Cl <i>, 51%</i>	Pd(PPh ₃) ₄ Cs ₂ CO ₃	CI	4f: n = 6, 88% 4g: n = 7, 90%	$HN' M_n$	$\frac{\text{TFA}}{\text{TFA}} \rightarrow \text{Y} + \frac{\text{HN}}{\text{HN}} + \frac{\text{HN}} + \frac{HN}} + \frac{\text{HN}}{\text{HN}} + \frac{\text{HN}} + \frac{HN}}$	Н	7-Cl	1	5a	54	6a	75	92
	1,4-dioxane Ar, reflux, 22h		DMAc MW, 180°C		CH ₂ Cl ₂ 25°C, 2h	-х н	7-Cl	2	5b	45	6b	96	99
		3	0.5-1h	5a-g	6a-g	Н	7-Cl	3	5c	46	6c	93	93
2 , 78%		80%		See Tab. 1 for yields	See Tab. 1 for yield	s H	7-Cl	4	5d	31	6d	81	91
		<u>Figure 3</u> : Synthesis of ne	w 2-heteroaryl-4-amir	noquinolines			,	•	24	01	04	01	51
The synthe	sis of the key 4-am	ninoquinoline hybrids	5 was achieved vid	a two key steps. First, in	termediates 3 were obtained by	, H	7-Cl	5	5e	28	6e	59	96
The synthesis of the key 4-aminoquinoline hybrids 5 was achieved <i>via</i> two key steps. First, intermediates 3 were obtained by Suzuki cross-coupling reaction between 2-bromo-4-chloroquinoline precursors 1 and heteroarylboronic esters 2 that were H 7-Cl 6 5f 68 6f 88 93 prepared beforehand. Then, a microwave-enhanced aromatic nucleophilic substitution was performed on the 2-heteroaryl-4- H 7-Cl 7 5g 40 6g 55 96								93					
								96					
•		a-g with excellent yield				*HPLC analysis		Tal	<u>ble 1:</u> Key a	aminoquinoline	hybrids and	final products	

Physicochemical and biological prerequisite study

		In silic	o prec	dicted physicoch	emical properties	Contrary negative bacte				
	Com	oounds		clogP _{o/w} *	pKa**	barrier that diminishes				
	Cipro	floxacin		0.28	6.2 (COOH) 8.6 (N ₂ , piperazine)	molecules as target. This	is why dr			
	Hit	AAV I		2.82	12.36 (OH, 4-quinolinol) 4.53 (N ₁ , 4-quinolinol)	physicochemical prere aminoquinolines make				
	Χ	Υ	n			rules. <i>c</i> logP _{o/w} compounds 6				
6a	Н	7-Cl	1	2.58	7.1 (N, quinoline) 10.1 (NH ₂)	favor of a pa presence of i	assive diffu			
6b	Н	7-Cl	2	2.96	7.5 (N, quinoline) 10.2 (NH ₂)	should facilitat	e the cell e			
6c	Н	7-Cl	3	3.32	7.6 (N, quinoline) 10.2 (NH ₂)	Hybrids 6a-c were activity. They showed that is a favorable result				
6d	Н	7-Cl	4	3.64	7.6 (N, quinoline) 10.2 (NH ₂)	that is a lavora	MIC			
6e	Н	7-Cl	5	4.03	7.6 (N, quinoline) 10.2 (NH ₂)	Compounds	<i>S. aureus</i> CIP 103.29			
6f	Н	7-Cl	6	4.36	7.6 (N, quinoline)	Ciprofloxacin	0.06			
					$10.2 (NH_2)$	<u>6a</u>	≈ 256			
6g	Н	7-Cl	7	4.67	7.6 (N, quinoline) 10.2 (NH ₂)	6b	≈ 256			
					ν <u>ζ</u> γ	~				

Gram-positive bacteria, Gramssess a lipopolysaccharidic diderm es the permeability to therapeutic s their chances of reaching their y drugs have to fulfill several erequisites. Our 2-heteroaryl-4ake no infraction to the Lipinski reveal a stronger lipophilicity of an hybrids **6a-d** that could be in diffusion (Tab. 2). Anyway, the ole functions at physiological pH cell entry via porins.

vere tested for their bactericidal ed no effect on bacterial growth sult for AVAs (Tab. 3).

MIC (µg/mL)

P. aeruginosa

DSM 1117

0.06

Anti-virulence evaluation

The evaluation of anti-pyocyanin properties of the synthesized products was carried out on *P. aeruginosa* PAO1 strain measuring the pigment concentration by UV/Vis spectrometry. Compounds 6a, 6b and 6c revealed more efficient to inhibit pyocyanin production than the hit AAV I with a decrease of 30.5, 30.7 and 43.4% at 50 μ M, respectively (Fig. 4).

Figure 4: Evaluation of pyocyanin production on *P. aeruginosa* PAO1 strain.

Measurement of the pigment concentration by UV/Vis spectrometry after 48h growth in the presence or absence of new 2-heteroaryl-4aminoquinolines at different concentrations. Bars represent the mean ± SD of at least three independent experiments performed in triplicate. *p < 0.05 and **p < 0.01 vs control (Mann-Whitney's test : p values < 0.05 were considered significant).

<u>Table 2</u>: clogP_{o/w} and pKa values for 2-heteroaryl-4-aminoquinolines calculated via *Qikprop and **Epik softwares.

6a	≈ 256	≈ 256	≈ 256					
6b	≈ 256	≈ 256	≈ 256					
6с	≈ 256	≈ 256	≈ 256					
Table 3: MIC of 2-heteroaryl-4-aminoquinolines 6a-c on three								

ESKAPEE bacterial strains.

Conclusion and perspectives

Seven new 2-heteroaryl-4-aminoquinoline hybrids have been synthetized with global yields of 5 to 21%. Promising physicochemical and anti-virulence properties have been highlighted for non-bactericidal molecules 6a-c. Further biological evaluations including anti-biofilm, anti-pyocyanin and cytotoxicity assays as well as extended pharmacomodulations on the bi-aromatic scaffold are ongoing to expand the efficacy screening.

References : 1. Malhotra, S. et al. Clin. Microbiol. Rev. 2019, 32, e00138-18. 2. Jurado-Martín, I. et al. IJMS 2021, 22, 3128. 3. Duplantier, M.; Lohou, E.; Sonnet, P. Pharmaceuticals 2021, 14, 1262. 4. Rather, M.A. et al. Microbiol. Res. 2022, 264, 127173. 5. Starkey, M. et al. PLoS Patholog. 2014, 10, e1004321. 6. Zahler, R. WO 2016/112088. 7. Aleksic, I. et al. ACS Chem. Biol. 2019, 14, 2800-2809.

The 8th International Electronic ECMC **Conference on Medicinal Chemistry** 202201-30 NOVEMBER 2022 ONLINE

E. coli

DSM 1103

0.06