

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

Pyridazin-3(2H)-one as new FABP4 inhibitors suggested by molecular growing experiments

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Giuseppe Floresta ^{1,*}, Letizia Crocetti ², Chiara Zagni ¹ and Agostino Cilibrizzi ^{3,*}

- ¹ Dipartimento di Scienze del Farmaco e della Salute, Università di Catania
- ² Dipartimento NEUROFARBA Pharmaceutical and Nutraceutical Section
- ³ King's College London, Institute of Pharmaceutical Science

* Corresponding author: giuseppe.floresta@unict.it, agostino.cilibrizzi@kcl.ac.uk

Pyridazin-3(2H)-one as new FABP4 inhibitors suggested by molecular growing experiments

	X	
FABP4 inhibit	ion	IC50 (μM)
Arachidonic a	cid	3.42 ± 0.54
4b		8.27 ± 0.20
25a		2.97 ± 0.26
30b		23.18 ± 0.52
22		15.23 ± 0.76

Abstract: The therapeutic potential of fatty acid binding protein 4 (FABP4) is widely acknowledged. Currently, there are numerous clinical studies that indicate how fatty acid binding protein 4 inhibitors could be useful in the treatment of various diseases. To identify new and more potent inhibitors, we utilized a two-step computational approach to design novel structures. Through the use of this approach, we were able to identify a new class of FABP4 inhibitors (FABP4i IC₅₀ 2.97 to 23.18 μ M) that are capable of inhibiting the activity of the protein as low as Arachidonic acid (FABP4i IC₅₀ 3.42 ± 0.54 μ M). In this communication, we present the detailed structural, biological evaluation as well as the synthetic procedures of the new pyridazinone-based scaffold FABP4i.

Keywords: Fatty acid binding protein; FABP4; FABP4is; FABP4 inhibitors; pyridazinone; computing assisted molecular design

ЕСМС 2022

Introduction

Linoleic acid

WHY DO WE WANT TO INHIBIT THIS PROTEIN?

Arachidonic acid

Chronically elevated plasma fatty acid leads to pathophysiological disorders:

- Diabetes
- Obesity
- Atherosclerosis

FAs are insoluble in water, and their trafficking into the body requires specific carriers such as the fatty acid-binding proteins (FABPs) family.

FABP4 (aP2 or A-FABP) is the one expressed in adipocytes and the research into small molecules inhibitors for such protein initially started when it was reported that knockout animal models of FABP4 produced protective effects against the development of insulin resistance, as well as several pathological events linked to the metabolic syndrome and atherosclerosis

ECMC 2022

Introduction

Modified FABPs expression patterns were described for prostate, bladder, renal cell carcinoma and other types of cancer cells:

- **Promotion of methastasis** (ovarian cancer)
- **Promotes cancer cell progression** (prostate)
- Biomarker

Non-physiological expression of FABPs are present in some of the most common cancers such as renal cell carcinoma, bladder and prostate, as well as other types of cancer cells

есмс 2022

To generate a novel series of FABP4 inhibitors we have exploited a two-step computing assisted molecular design. As showed below, in the first step of the drug-design process we focused on the search for bioisosteric replacements/scaffold-hopping of the pyrimidine scaffold of the co-crystallyzed ligand (2-[(2-oxo-2-piperidin-1-ylethyl)sulfanyl]-6-(trifluoromethyl)pyrimidin-4-ol) pdbID: 1TOU. Our bioisosteric replacement analysis led to the selection of three nitrogen containing heterocyclic frameworks, i.e. pyridazinones, pyridines and benzo[d]thiazole. Considering the synthetic accessibility of pyridazinone-based molecules and that pyridazinone was not investigated earlier as a scaffold to access FABP4 inhibitors, we envisaged to use this heterocycle to carry out automated ligand growing experiments inside the FABP4 cavity leading to 52 target molecules

ECMC 2022

FABP4 inhibitory activity was assessed by measuring the decrease in fluorescence of a detection reagent when displaced by a strong ligand of FABP4. The series of synthesized molecules were screened in a two-step procedure. Firstly, a single concentration of 5 μ M was used for all of the molecules and then only compounds that were able to reduce the fluorescence reading (at least 95%) were fully evaluated and the IC_{50} (μM) measured and compared with the one of the potent ligand arachidonic acid. The single point displacement results are reported in the following slide. Considering the results of the first screening, 10 molecules were selected as best compounds able to reduce the fluorescence of the DR to at least 95% and the $IC_{50}\ (\mu M)$ was calculated. Arachidonic acid, a known powerful ligand of FABP4, was used as a positive control and revealed an IC₅₀ of 3.42 μ M. IC₅₀ of our set of compounds are reported in **Table 3** and **25a** showed the best result showed with IC_{50} of 2.97 μ M.

ECMC 2022

$O \longrightarrow R_{2}$ R_{6}			
		R ₄	
Comp.	R ₂	R 4	R 6
25a	CH ₃	NHCONH ₂	Ph
25b	$\mathcal{C}C_6H_{11}$	NHCONH ₂	Ph
25c	C_2H_5	NHCONH ₂	Ph
25d	<i>i</i> C ₃ H ₇	NHCONH ₂	Ph
25e	nC ₃ H ₇	NHCONH ₂	Ph
25f	nC4H9	NHCONH ₂	Ph
28	Η	NHCONH ₂	Ph
29a	CH ₃	NHCOCH3	Ph
29b	CH ₃	NHCOC ₂ H ₅	Ph
29c	CH ₃	NHCOiC3H7	Ph
29d	CH ₃	NHCOnC ₃ H ₇	Ph
30a	CH ₃	NH-(3-CN)-Ph	Ph
30b	CH ₃	NH-(2-CN)-Ph	Ph
31a	CH ₃	NH-(3-CONH2)-Ph	Ph
31b	CH ₃	NH-(2-CONH2)-Ph	Ph
35	CH₃		Ph
39a	CH ₃	NHCONH ₂	cC_6H_{11}
39b	CH ₃	NHCONH ₂	<i>i</i> C ₃ H ₇
40	Н	NHCONH ₂	2-(OH)-Ph
43	CH ₃	NHCONH ₂	2-(OH)-Ph
49	CH ₃	NHCONH ₂	2-pyridiny
51	CH ₃	CONH ₂	Ph
55	Ph	NHCONH ₂	CH ₃

Η

Η

pyrazole

2-pyridinyl

CH₃

CH₃

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

48

54

57

CH₃

Ph

Ph

^aReagents and conditions: (a) Et₃N, CH₃OH, 60 °C, 2 h; (b) 6N NaOH, EtOH, reflux, 30 min; (c) (i) SOCl₂, Et₃N, r.t., 30 min;
(ii) R-NH₂, anhydrous THF, r.t., 2 h; (d) CH₃CH₂Br, K₂CO₃, anhydrous DMF, reflux, 30-90 min; (e) 33% NH₄OH, C₅H₁₁N, 60 °C,
90 min; (f) POCl₃, 60 °C, 2h.

^aReagents and conditions: (a) anhydrous EtOH, 0 °C, 1h; (b) phenylhydrazine, PPA, EtOH, 70 °C, 30 min; (c) CH₃OH, Et₃N, 60 °C, 2h; (d) NaOH, EtOH, reflux, 30 min; (e) (i) SOCl₂, Et₃N, reflux, 30 min.; (ii) 33% NH₄OH, anhydrous THF, r.t., 15 min; (f) POCl₃, 60 °C, 2h; (g) HCOONH₄, 10% Pd/C, EtOH, reflux, 2 h.

aReagents and conditions: (a) cyclohexylhydrazine, PPA, EtOH, 70 °C, 30 min; (b) 33% NH₃, piperidine, 60 °C, 90 min; (c) POCl₃, 60 °C, 2h.

aReagents and conditions: (a) suitable R-Br, K_2CO_3 , anhydrous DMF, reflux, 1-4 h; (b) (i) dry THF, CH₃COONa, 0°C then triphosgene, reflux, 2 h; (ii) NH₃ 33%, 0 °C, 1 h; (c) Lawesson's reagent, anhydrous toluene, reflux, 5 h.

COOCH₂CH₃

29	R	
a	CH ₃	
b	C ₂ H ₅	
c	iC ₃ H ₇	
d	nC_3H_7	

-COCH₃

Comp.	CN/CONH ₂	
30a	meta	
30b	ortho	
31a	meta	
31b	ortho	

соон

39	R
a	cC_6H_{11}
b	iC ₃ H ₇

36	R
a	3-thienyl
b	cC_6H_{11}
с	iC_3H_7
d	CH ₂ Ph
e	2-OH-Ph
f	4-NO2.Ph

37	R	
a	3-thienyl	
b	cC_6H_{11}	
с	iC ₃ H ₇	
d	CH ₂ Ph	
e	2-OH-Ph	

R

2-OH-Ph

4-NO2.Ph

2-OH-Ph

4-NH₂Ph

Comp.

41a

41b 42a

42b

38	R	
a	3-thienyl	
b	cC_6H_{11}	
с	iC_3H_7	
d	CH ₂ Ph	

^aReagents and conditions: (a) NH_2NH_4 · H_2O , sealed/pressure vessel, 180 °C, 12 h; (b) CH_3I , K_2CO_3 , anhydrous DMF, 80 °C, 2-4 h; (c) (i) anhydrous THF, CH_3COONa , 0°C then triphosgene, reflux, 2 h; (ii) NH_4OH 33%, 0 °C, 1 h; (d) $CICOCH_3$, anhydrous THF, 0 °C, then r.t., 20 min

ECMC 2022

aReagents and conditions: (a) CH₃(NH)NH₂, EtOH 96%, r.t., 2 h; (b) HCOONH₄, Pd/C, EtOH 96%, reflux, 2h; (c) HBr 48%, sealed/pressure vessel, 130 °C, 3 h; (d) (i) anhydrous THF, CH₃COONa, 0°C then triphosgene, reflux, 2 h; (ii) 33% NH₄OH, 0 °C, 1 h.

^aReagents and conditions: (a) CH₃I, K₂CO₃, anhydrous DMF, 80 °C, 2 h.

aReagents and conditions: (a) HCOONH₄ Pd/C 10%, EtOH 96%, reflux, 2 h; (b) HBr 48%, sealed/pressure vessel, 130 °C, 3 h;
(c) (i) anhydrous THF, CH₃COONa, 0°C then triphosgene, reflux, 2 h; (ii) NH₄OH 33%, 0 °C, 1 h; (d) DMF-DMA, 90 °C, 1 h; (e) NH₂NH₄·H₂O, anhydrous EtOH, 70 °C, 10 h.

Single point displacement experiment for selected compounds

Measured IC₅₀ values for selected compounds

		Compounds	IC ₅₀ (μM)
	\frown	Arachidonic acid	3.42 ± 0.54
H₂N →NH	N-N	4b	8.27 ± 0.20
	OCN	25a	2.97 ± 0.26
	NH ₂	30b	23.18 ± 0.52
4b	22	22	15.23 ± 0.76
		25c	>50
		35	>50
		25e	>50
H NH ₂ H CN	54	>50	
~	~	55	>50
25a	30b	27	>50

The docking experiments of the studied compounds were conducted on the most active compounds **4b**, **25a**, **30b**, and **22**. **Figure 3** shows the 2D binding interactions for the studied molecules while Figure 4 displays the predicted poses inside the binding pocket of FABP4. All the molecules are able to engage several interactions with relevant residues in the binding pocket

Up left) 2D interaction between **4b** and FABP4. Up right) 2D interaction between **25a** and FABP4. Down left) 2D interaction between **30b** and FABP4. Down right) 2D interaction between **22** and FABP4.

Conclusions

We have identified novel pyridazinone-based FABP4 inhibitors whose design was directed by computing assisted molecular design

Several compounds have been synthesized and tested for their ability to inhibit FABP4.

Among the new series, ten compounds were firstly selected for their inhibitory activity over FABP4 using a single point displacement assay.

In particular, **4b**, **25a**, **30b** and **22** exhibited high FABP4 inhibitory activity with IC_{50} in the low micromolar range.

The results showed that compound **25a** was the most active in terms of displacement of the arachidonic acid showing IC_{50} of 2.97 μ M, which is higher than the positive control, docking experiments confirmed the interaction with the binding pocket of the protein

есмс 2022