

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01-30 NOVEMBER 2022 ONLINE

SYNTHESIS, DOCKING STUDIES AND ANTICHOLINESTERASE INHIBITION OF OPEN-CHAIN CARBOHYDRATE AMIDES

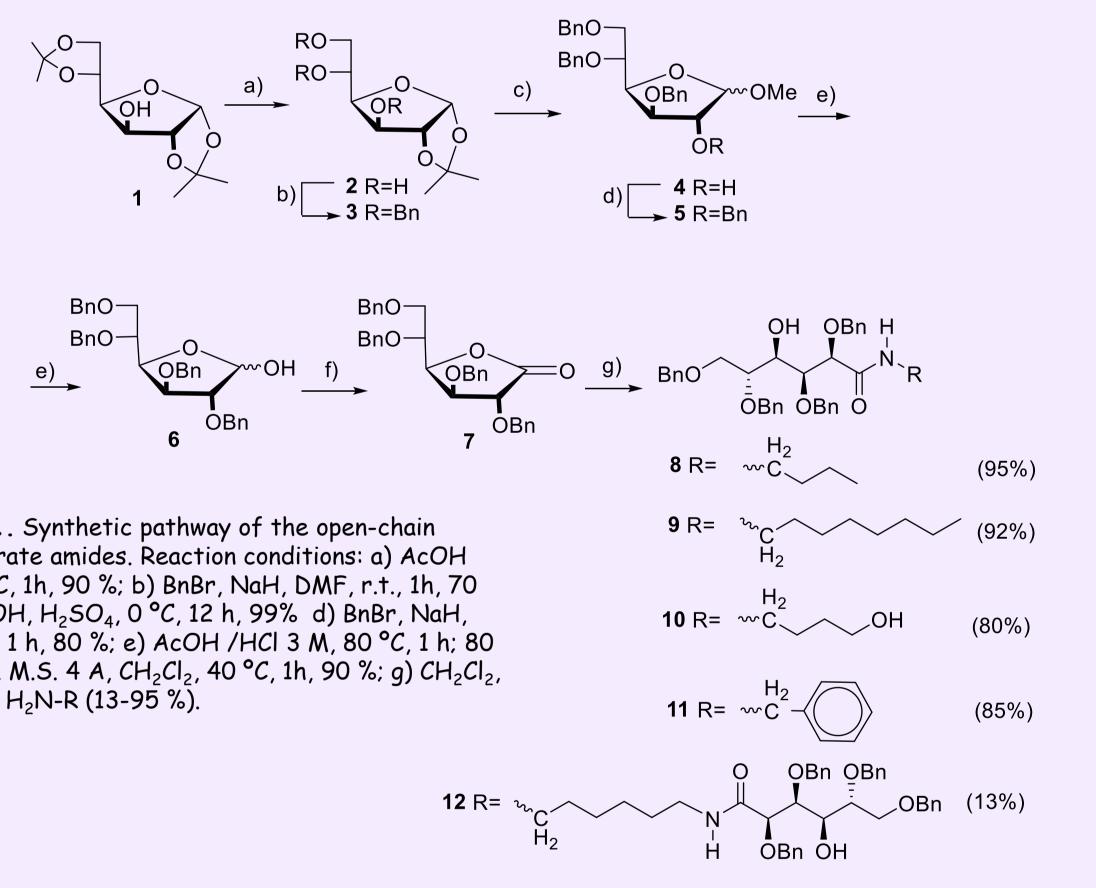
<u>M.I. Ismael.^{1,2}, R. Gonçalves-Pereira^{1,2,3}, J.A. Figueiredo², S.D. Lucas⁴, M.I. García-Moreno³, C. Ortiz Mellet³, A.P. Rauter²</u>

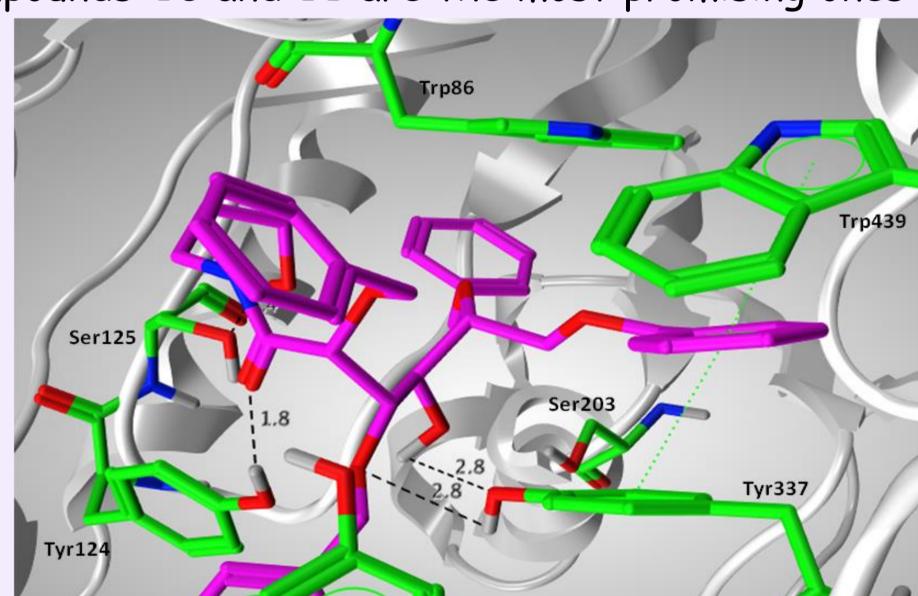
¹Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

²Departamento Química, Unidade I&D FibEnTech, Universidade da Beira Interior, Av. Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal

³Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González 1, 41012 Sevilla, Spain

⁴Dpt. of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal



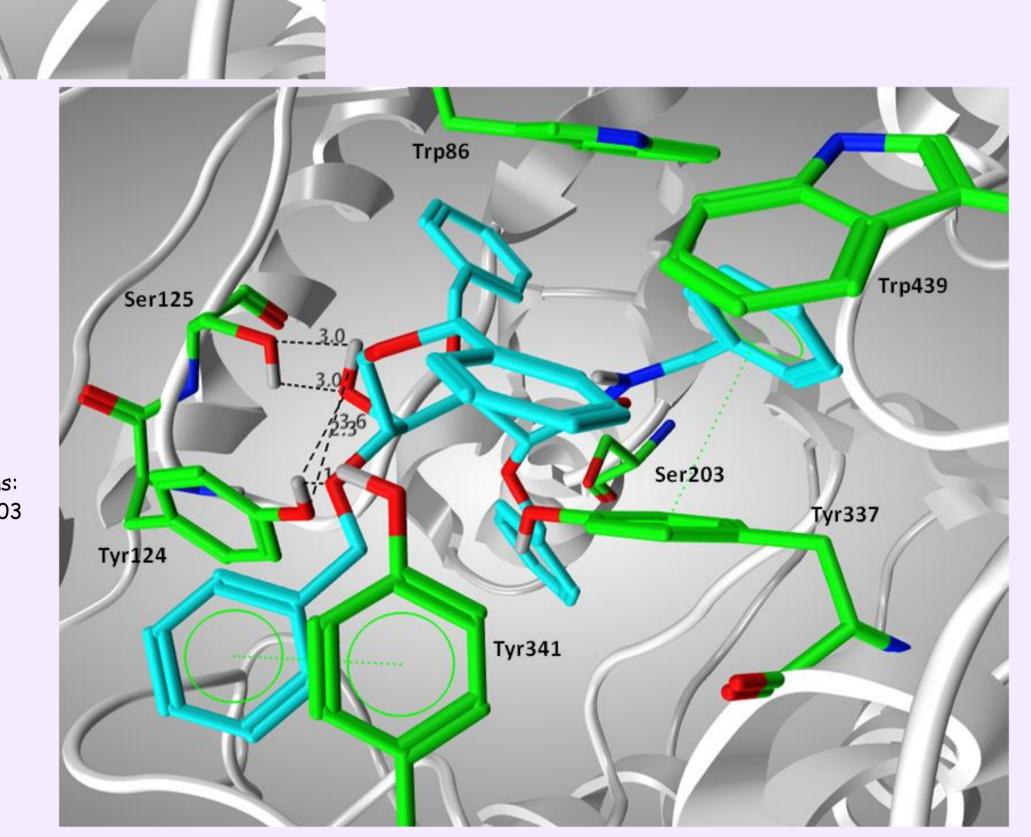

INTRODUCTION

According to the World Health Organization (WHO) in 2018, about 50 million people worldwide currently suffer from dementia, and two thirds of them have Alzheimer's disease (AD), a severe neurodegenerative disorder.^{1,2}This number is expected to reach over 150 million by 2050³ and the approved treatments only alleviate AD symptoms, being unable to stop disease progression⁴. The enzyme acetylcholinesterase (AChE) is involved in neurotransmission in the brain and its inhibition has an important role in the progression of the AD⁴. Hence, we have explored molecular diversity towards new agents to control disease progression targeting disease molecular mechanisms involved in neurotransmission based on open chain sugar amides.

RESULTS AND DISCUSSION

Synthesis of the new sugar amides is depicted in Scheme 1, covering the preparation of protected glucono-1,4-lactone 7 and reaction with the appropriate amines. Evaluation of AChE inhibition shows that compounds 10 and 11 are the most promising ones (63 and 63,4% inhibition activity). (Table 1).

Tyr341


Figure 1 - Docking studies of compound 10 gave the interactions: $\pi \pi$ stacking with residues Tyr 337 and Trp 439 6-OBn $\pi \pi$ stacking with Tyr341. 3-OBn 0-3, OH-4 Tyr337. H-bonding to the Tyr124 Carbonyl H-donor toward Ser125-OH interaction. OH-primary

Scheme 1. Synthetic pathway of the open-chain carbohydrate amides. Reaction conditions: a) AcOH 80%, 60°C, 1h, 90 %; b) BnBr, NaH, DMF, r.t., 1h, 70 %; c) MeOH, H₂SO₄, 0 °C, 12 h, 99% d) BnBr, NaH, DMF, r.t., 1 h, 80 %; e) AcOH /HCl 3 M, 80 °C, 1 h; 80 %; f) PCC, M.S. 4 A, CH₂Cl₂, 40 °C, 1h, 90 %; g) CH₂Cl₂, 40 °C, 1h, H₂N-R (13-95 %).

Figure 2 - Docking studies of compound 11 gave the interactions: $\pi \pi$ stacking with residues Tyr 337 blocking Ser 203 NH-Bn $\pi \pi$ stacking with Tyr341. 5-OBn 0-5, OH-4 Tyr124 and Ser125, strong H-bonding..

Compound nr	Inhibition (%) of AChE activity
8	60.0
9	48.7
10	63.4
11	63.0
12	29.0
Rivastigmine	98.6

CONCLUSION

Docking studies with PDB code of AChE used was 4BDT, and have shown that aromatic groups as well as H-bond donor and acceptor groups as well as the flexibility associated with the open-chain form of these sugars are responsible for their activity.

REFERENCES

(1) Przybylowska M, Dzierzbicka K, Kowalski S, Demkowicz S, Dasko M, Inkielewicz-Stepniak I, (2022), J Enzy Inhib. Med Chem, 37, 1, 1012-1022

(2) Ragab HM, Teleb M, Haidar HR, Gouda N. (2019). Bioorg Chem 86:557-68. (3) Deture, M.A., Dickson, D.W., (2019). Mol. Neurodegener. 14, 1-18. (4) Alzheimer's Association. (2020) Alzheimer's disease facts and figures. Alzheimer's Dementia 391-460. https://doi.org/10.1002/alz.12068.

The studied compounds inhibited acetylcholinesterase to some extent (29-63.4% inhibition). The most promising ones are compounds 10 and 11, bearing the amide functionality N-substituted with benzyl or hydroxypropyl groups.

The efficiency of the reactions makes the approach very well-suited for production of new molecular entities for structure-activity relationship studies, where both the configurational pattern and the nature of N-substituents can be systematically profiled.