

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

A potential blueprint for the design of biased ligands for aminergic GPCRs

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Marcel Bermudez ^{1,*}

¹ University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Corrensstr. 48, 48149 Münster, Germany.

* Corresponding author: m.bermudez@uni-muenster.de

A potential blueprint for the design of biased ligands for aminergic GPCRs

Abstract: GPCRs are omnipresent in the regulation of physiological processes and therefore account for the most prominent drug target class. However, nearly all drugs targeting GPCRs have been developed by the concept of receptors as simple on-off switches. This is surprising, because specifically addressing a distinct intracellular signaling pathway holds the potential to develop safer and more efficient drugs. In recent years more and more ligands have been reported that shift the naturally imprinted preference of a receptor's signaling profile, so-called biased ligands. It has been demonstrated for several aminergic GPCRs that an extension of their molecular structure towards extracellular receptor regions results in biased signaling. The underlying mechanism is a specific interference with the allosteric coupling mechanism by which extra- and intracellular sides of the receptor are conformationally linked. We propose a potential blueprint for the design of biased ligands based on the concept of specific interference with the extracellular receptor region and a restriction of its conformational space by extended ligand structures. While this design concept will likely identify new biased ligands, it remains a challenge to specifically design ligands with a desired signaling

profile.

Keywords: GPCR; biased signaling, drug design, allosteric coupling

ECMC 2022

What is biased signaling

Ligand-dependent bias is a shift in the receptor's naturally imprinted preference for certain intracellular binding partners

BiasDB – a database for biased ligands

Result for *iper-8-naph* as example query

Ligand 🔺	Structure	Receptor family	Receptor subtype	Bias category	Bias	Reference ligand	Assay one	Assay two	DOI	\$
lper-8- naph	an marine	Muscarinic receptor	M2 receptor	G protein	Gi / β-Arr	Acetylcholine	GTPyS	BRET	10.1038/ncomms2028	
lper-8- naph	an marily	Muscarinic receptor	M2 receptor	G protein selectivity	Gi / Gs	Iperoxo	GTPγS	CAMP	10.1021/acschembio.7b002	:75

Omieczynski ... and Bermudez; BioRxiv; 2019

Detecting and quantifying biased signaling is far from being trivial

The major challenge for the BiasDB: no standardized or commonly accepted way how to report biased siganling

INVITED REVIEW 🔂 Open Access 🛛 😨 🚺

Community guidelines for GPCR ligand bias: IUPHAR review 32

Peter Kolb 🔀, Terry Kenakin 🔀, Stephen P. H. Alexander, Marcel Bermudez, Laura M. Bohn, Christian S. Breinholt, Michel Bouvier, Stephen J. Hill, Evi Kostenis, Kirill A. Martemyanov ... See all authors 🗸

Kolb, Kenakin, Alexander, Bermudez et al.; Brit. J. Pharmacol; 2022

ECMC 2022

BiasDB – a database for biased ligands

Biased ligands have a trend to be larger, more lipophilic and contain more rings

These trends are even more pronounced for aminergic GPCRs

Omieczynski ... and Bermudez; BioRxiv; 2019

G protein selectivity

Bermudez et al., Mol Inform, 2015

G protein selectivity

G_i coupling is linked to a large conformational ensemble

Gq coupling occurs within a more specific conformational space

Bermudez et al., Mol Inform, 2015

GPCR activation

Bock and Bermudez et al., *J Biol Chem*, **2016;** Bermudez and Bock et al., *ACS Chem Biol*, **2017;** Holze and Bermudez et al., *ACS Pharmacol Transl Sci*, **2020;** Bock and Bermudez, *FEBS J*, **2021**

ЕСМС 2022

Allosteric coupling and GPCR activation

Bock and Bermudez, FEBS J, 2021

G protein selectivity vs. biased signaling

Hampered rearrangement of the allosteric vestibule results in a G_i bias

Conformational intererence with allosteric coupling results in biased signaling

Bermudez and Bock et al., ACS Chem Biol, 2017

V.S

G protein selectivity vs. biased signaling

Bermudez and Bock et al., ACS Chem Biol, 2017

Does this mechanism apply to other aminergic GPCRs?

Our data on $5-HT_{2B}$ receptors suggest a transferable mechanism

Denzinger et al., IJMS., 2020

What differences occur when comparing *G protein-bound* and arrestin-bound receptor conformations?

Major differences occur at similar regions when compared to general receptor activation

Bermudez and Bock, Trends Pharmacol. Sci., 2019; Bock and Bermudez, FEBS J., 2021

Can we fine-tune G protein preferences with biased ligands?

Holze and Bermudez, ACS Pharmacol. Transl. Sci., 2020

Fine-tuning G protein preference with biased ligands

Holze and Bermudez, ACS Pharmacol. Transl. Sci., 2020

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

Biased signaling by divergent binding pocket closure

Bermudez and Bock, Trends Pharmacol. Sci., 2019; Bock and Bermudez, FEBS J., 2021

ECMC 2022

Conclusion

Extending a ligand's molecular structure towards the extracellular loop region is a likely source for biased ligands.

While this concept provides a way to design biased ligands, it remains challenging to design biased ligands with a desired signaling profile.

Hotspot residues and hierarchical preferences are receptor (subtype)specific and might not be transferable

ECMC 2022

Acknowledgments

Collaborators

Gerhard Wolber

Andreas Bock

Carsten Hoffman

Ulrike Holzgrabe

Evi Kostenis

DFG Deutsche Forschungsgemeinschaft

...and all tax payers

