

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

Methoxyphenylimidazolines as potential activators of p53

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Daniil Bazanov^{1*}, Nikolay Pervushin², Natalia Lozinskaya¹, Gelina Kopeina²

- ¹ Department of Chemistry, M. V. Lomonosov Moscow State University
- ² Department of Medicine, M. V. Lomonosov Moscow State University
- * Corresponding author: daniil_bazanov@mail.ru

Lomonosov Moscow State University

Methoxyphenylimidazolines as potential activators of p53

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE

№2. p53/mdm2 interaction

Examples of the main inhibitors of p53-MDM2 interaction. Yuan Fang, Guochao Liao, Bin Yu, **Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives**, Acta Pharmaceutica Sinica B, Volume 10, Issue 7, 2020, Pages 1253-1278, ISSN 2211-3835, https://doi.org/10.1016/j.apsb.2020.01.003.

№3. p53/mdm2 inhibitors

Disadvantages of cis-imidazoline inhibitors: Low water solubility

The purpose of the work:

Synthesis of new cis-imidazoline inhibitors with increased water solubility and resistance to oxidation.

The crystal structure of MDM2 (shown by the green surface) in complex with RG7112 (yellow, PDB code: 4IPF). (B) Superposition of MDM2 crystal structures in complex with RG7112 (green) and Nutlin-3a (gold, PDB code: 4J3E).

Nº4. Synthetic approach (literary)

approaches to the synthesis of p53/mdm2 imidazoline inhibitors *Original synthesis of RG7112 inhibitor* (Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.J.; Zhao, C.; Glenn, K.; Wen, Y.; et al. *Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development*. ACS Medicinal Chemistry Letters 2013, 4, 466–469, doi:10.1021/ml4000657)

Nº5. The synthetic approach of this work

Nº6. Molecular modeling

Nº7. Cytotoxicity (series №3)

N⁰	Compound	R	A549 (IC50 <i>,</i> μM)	N⁰	Compound	R	A549 (ΙC50, μM)
1	3a	2-MeO	27.36±0.79	16	Зр	4-Br	9.05±0.20
2	3b	3-MeO	64.31±1.04	17	Зq	4-F	107.83±4.65
3	Зс	4-MeO	43.90±1.87	18	3r	3,5-diMeO	_2
4	3d	2,3-diMeO	16.18±0.29	19	3 s	4-OH	n.a. ¹
5	3e	2-EtO,3-MeO	24.26±2.10	20	3t	4-OH(R ¹),4-MeO(R ²) ³	n.a.1
6	3f	2,4-diMeO	9.32±0.47	21	Зu	3-OH	310.60±16.67
7	3g	3,4-diMeO	84.69±0.76	22	3v	2,5-diOH	n.a. ¹
8	3h	2,5-diMeO	21.42±1.07	23	3w	3,4,5-trisHO	_2
9	3i	3,4,5-trisMeO	n.a.1	24	3x	4-Me	_2
10	3j	4-EtO	13.26±0.37	25	Зу	3-Me	_2
11	3k	3-MeO,4-EtO	67.49±0.04	26	3z	2-Me	_2
12	31	2-Cl	10.68±0.18	27	Заа	4-Et	_2
13	3m	4-Cl	20.25±1.88	28	3ab	4-iPr	_2
14	3n	2,4-diCl	164.41±13.74	29	3ac	2,4,5-trisMeO	_2
15	30	3,4-diCl	13.72±1.02	30	3ad	2,3,4-trisMeO	_2
					Nutlin-3a		15.12 ¹⁵

1 n.a. lack of activity of this type

2 tests were not carried out

Bazanov, D.R.; Pervushin, N. V.; Savitskaya, V.Yu.; Anikina, L. V.; Proskurnina, M. V.; Lozinskaya, N.A.; Kopeina, G.S. **2,4,5-Tris(Alkoxyaryl)Imidazoline Derivatives as Potent Scaffold for Novel P53-MDM2 Interaction Inhibitors: Design, Synthesis, and Biological Evaluation.** Bioorganic & Medicinal Chemistry Letters **2019**, 29, 2364– 2368, doi:10.1016/j.bmcl.2019.06.007.

Bazanov, D.R.; Pervushin, N. V.; Savitskaya, V.Yu.; Anikina, L. V.; Proskurnina, M. V.; Lozinskaya, N.A.; Kopeina, G.S. **2,4,5-Tris(Alkoxyaryl)Imidazoline Derivatives as Potent Scaffold for Novel P53-MDM2 Interaction Inhibitors: Design, Synthesis, and Biological Evaluation.** Bioorganic & Medicinal Chemistry Letters **2019**, 29, 2364– 2368, doi:10.1016/j.bmcl.2019.06.007.

Nº9. Synthesis and biological activity of sulfonamide derivatives (series №4)

N⁰	Compound	R 1	R2	Yield, %	↑ p53	AC 2
1	4 a	4-MeO	Ts	85	-	$1 \qquad 1^{p53} \qquad $
2	4 b	4-MeO		78	-	$R_2 SO_2 CI, DMAP, Et_3 N, CH_2 CI_2,$
3	4 c	4-MeO		76	-	$H = \frac{1}{25 \text{ C}, 24 \text{ H}}$
4	4d	2,4-diMeO	Ts	73	-	R_1 R_1 O
5	4 e	2,4-diMeO		36	-	RKO cell line
6	4f	3,4-diMeO	Ts	36	0,7	$\frac{41}{-0.515} \mu M = 0.515$ RG7112 Nutlin-3
7	4 g	3,4-diMe		31	1,5	p53 - 0.1 0.25 0.5 μΜ 1,0 1,2 1,55 2,1 p53/GAPDH 1,0 1,55 1,3 1,25 p53
8	4h	3,4-diMeO		35	2,7	p21 1,0 1,96 2,2 3,13 p53/GAPDH 1,0 1,12 1,09 1, p21 p21 p21
9	4i	3,4-diMeO	Et ₂ N	37	2,3	1,0 2,0 3,1 4,0 p21/GAPDH 1,0 2,4 2,5 3,2 1,0 3,1 7,8 14,1 p21/GAPDH 1,0 0,84 1,04 1, GAPDH GAPDH GAPDH GAPDH GAPDH GAPDH
10	4j	3,4-diMeO	\bigvee	27	0,8	Western Blot analysis of total cellular lysates from RK
11	4 k	2,5-diMeO		81	-	cells upon treatment with compounds 3h, 3i, Nutlin-
12	41	2,5-diMeO		76	-	

Bazanov, D.R.; Pervushin, N. V; Savin, E. V; Tsymliakov, M.D.; Maksutova, A.I.; Sosonyuk, S.E.; Kopeina, G.S.; Lozinskaya, N.A. Sulfonamide Derivatives of Cis -Imidazolines as Potent P53-MDM2 / MDMX Protein-Protein Interaction Inhibitors. *Medicinal Chemistry Research* 2021, doi:10.1007/s00044-021-02802-w.

Nº10. Synthesis and biological activity of carbamides (series №5)

Ng	Compound	R_1	R_2	IC50, μM A549	N⁰	Compound	R_1	\mathbf{R}_2	IC50, μM A549	N⁰	Compound	R_1	R ₂	IC50, μM A549
1	5a	4-MeO		58.2±9.2	10	5j	2,4-diMeO		105,7±20,2	19	5s	3,4-diMeO	, I	102.1±50
2	5b	4-MeO	o 	165±100	11	5k	2,4-diMeO	⊂_N_!	30±2,5	20	5t	3,4-diMeO		>200
3	5c	4-MeO		53.9±7	12	51	2,4-diMeO	, N	17,8±2,1	21	5u	3,5-diMeO		24,6±6,3
4	5d	4-MeO		38±5	13	5m	2,4-diMeO		21±3	22	5v	3,5-diMeO		93.6±20
5	5e	4-MeO		124±60	14	5n	3,4-diMeO		105.2±25	23	5w	3,5-diMeO		104,3±36
6	5f	4-MeO	·	38,8±4,5	15	50	3,4-diMeO		123.4±41.5	24	5x	4-C1		16,2±3,1
7	5g	4-MeO	_z <0	89,8±7,5	16	5р	3,4-diMeO		104.4±50.5	25	5y	2,4-diCl		25,2±8,2
8	5h	2-MeO		60,4±26,3	17	5q	3,4-diMeO		123.1±50	26	5z	2,4-diCl		18,7±2,5
9	5i	2.4- diMeO		35,2±6,4	18	5r	3,4-diMeO		-	27	5 aa	2,4-diCl		86,6±45,4

Bazanov, D.R.; Pervushin, N.V.; Savin, E.V. Michael D. Tsymliakov, Anita I. Maksutova, Victoria Yu. Savitskaya, Sergey E. Sosonyuk, Yulia A. Gracheva, Michael Yu. Seliverstov, Natalia A. Lozinskaya and Gelina S. Kopeina. Synthetic design and biological evaluation of new p53-MDM2 interaction inhibitors based on imidazoline core. *Pharmaceuticals* 2022, *15*, 4. https://doi.org/10.3390/ph15040444

Nº11. Synthesis and biological activity of carbamides (series №5)

(A). Western Blot analysis of total cellular lysates from RKO cells upon the treatment with compounds 2l, 2k (both—20 μ M), Nutlin-3a (10 μ M) and RG7388 (5 μ M). (B)— Densitometric analysis of p53 bands normalized to GAPDH. Data are presented as mean +/-SD from three independent experiments. (C)—The histograms of flow cytometry (FC) analysis data for RKO cells: sub-G1 assay (up), %—percent of Sub-G1 population and Annexin V-FITC/PI staining (below), % viable cells—cells negative for both Annexin V-FITC and propidium iodide (PI).

Western Blot analysis of total cellular lysates from SK-N-SH (A) and SH-SY5Y (D) cells upon the treatment with compounds 2l, 2k (both—20 μ M), Nutlin-3a (10 μ M) and RG7388 (5 μ M). (B,E)— Densitometric analysis of p53, p21 and Puma bands normalized to GAPDH in SK-N-SH (B) and SH-SY5Y (E) cells. Data are presented as mean +/– SD from three independent experiments. (C,F)—The histogram of flow cytometry (FC) analysis data for SK-N-SH cells using sub-G1 assay, %—percent of Sub-G1 population.

Bazanov, D.R.; Pervushin, N.V.; Savin, E.V. Michael D. Tsymliakov, Anita I. Maksutova, Victoria Yu. Savitskaya, Sergey E. Sosonyuk, Yulia A. Gracheva, Michael Yu. Seliverstov, Natalia A. Lozinskaya and Gelina S. Kopeina. Synthetic design and biological evaluation of new p53-MDM2 interaction inhibitors based on imidazoline core. *Pharmaceuticals* 2022, *15*, 4. https://doi.org/10.3390/ph15040444

12. Conclusions

- 1. A series of 2,4,5-triarylimidazolines was synthesized, the cytotoxicity of the derivatives obtained was tested, and the compound that most effectively stabilizes the level of p53 in tumor cells was determined.
- 2. Modification of 2,4,5-triarylimidazolines with sulfamoyl chloride derivatives was carried out, their biological activity was evaluated by the ability to stabilize the p53 protein.
- 3. Modification of 2,4,5-triarylimidazolines by derivatives of secondary amines and BTC was carried out. A leader compound has been determined that stabilizes the p53 level by more than 7 times compared to the control. Activity was confirmed on five cell lines.

ECMC 2022 The 8th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2022 | ONLINE