

MULTIVALENT DEOXYRIBOZYME CONSTRUCTIONS FOR EFFICIENT CLEAVAGE OF TARGETED RNA

Completed by: student of group # A42424 Batsa M. Supervised by: Professor PhD, Vladimir Vinogradov Co-supervised by: Professor PhD, Dmitry Kolpashchikov

Therapeutic nucleic acid for gene therapy

RNA-cleaving DNAzymes (DZ)

Advantages of DZs

- high selectivity
- Independent of any additional protein interaction

Limitations of therapeutic nucleic acid approaches

- Off-target effects
- Low efficiency
- High cost of synthesis

Levin, 2019; Xiong et al., 2021

Limitations of DZs

- Weak affinity to folded targets
- Inefficient cleavage activity

How do we tackle the limitations of DZs?

- 1. Chemical modification and computational prediction
- 2. Multivalent based RNA-cleaving DNAzymes

💭 SCAMT

Fokina et al., 2015

Monovalent versus multivalent binding

Monovalent binds to a single ligand while multivalent binds to several ligands

• The number of ligands and the core structure (linear, circular, or radial) strongly influence the degeneracy coefficient, which is a measure of the energy states of the possible binding interactions

Aim and Objectives of Research

STR-58 is a fragment from streptomycin resistance cassette strA

HEG (hexaethylene glycol modification) can be conjugated at the 5' or 3' end of oligonucleotides

Bivalent and monovalent under multiple turnover conditions

Catalytic efficiency of DZ1-DZ2 and BD1

BD1 demonstrated higher catalytic efficiency at 25 nM as compared to DZ1-DZ2 at 100 nM after 5 h of incubation

Optimization of monovalent DZs

DZ1-DZ2 optimization

Kinetics of optimized DZs and BD1

At 5 h of incubation

Covalently linked BD1in a single nanostructure increased hybridization of the cleavage agent to the substrate

Conclusion

BDs have demonstrated higher cleavage activity in cleaving STR-58 than monovalent constructions Two DZs covalently linked in a single nanostructure increased DZ hybridization and affinity to substrates, resulting in higher catalytic activity at low concentrations than monovalent DZs at high concentrations

Optimization

Although increasing the length of the binding arms increased the efficiency of monovalent constructions, covalently linked DZs in single nanostructures are the most efficient constructions for RNA cleavage activity

ITMO UNIVERSITY

Our multivalent DZ models demonstrated efficient catalytic cleavage activity, indicating a promising path for future DZ research

Molecular Biology, Biotechnology, and related fields

Research Interest

- 1. Genetic engineering
- 2. Genomics
- 3. Molecular mechanisms
- 4. Bioinformatics

Contact Details

kmichaelbatsa@gmail.com

ITMO UNIVERSITY

+79117580878

Thank you for your attention

kmichaelbatsa@gmail.com

Assisted by Mikhail Dubovichenko

Prepared by Michael Batsa

APPENDIX 1 - Experimental reaction

APPENDIX 2 - Assembled BDs

AAACGGTAC5

BD4

BD5

BD6

APPENDIX 3 – BDs Efficiency

