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Abstract: Among different green oxidative protocols, I2 catalyzed DMSO systems have recently re-

ceived considerable attention being greener, efficient, atom-economical, low-cost and offering the 

possibility to perform reactions under safe and mild conditions. Particularly interesting is the appli-

cation in the chalcogen-chalcogen bond activation that allows the in-situ formation of electrophilic 

species promoting a number of Se-C bond formation. In these reactions iodine acts as a catalytic 

oxidant continuously regenerated by the DMSO that can be used in stoichiometric amount under 

solvent free conditions. Methoxyselenylation reactions can be performed at room temperature but 

the reaction takes over 24 h to reach appreciable conversion yields. In this paper the activation by 

the use of a SynLED Parallel Photoreactor®  is investigated as an alternative energy source and the 

results are critically compared with those previously reported in literature. 
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1. Introduction 

Organoselenium compounds are even more attracting the interest of the scientific 

community in consideration of several biological activities that were recently reported not 

only as redox modulators but also as selective enzymatic inhibitors, opening their possible 

use as antimicrobial, antiviral and anticancer agents [1–8]. Organoselenium derivatives 

are interesting intermediates in organic synthesis due some peculiar aspects of the sele-

nium reactivity [9–11] and for these reasons their preparation using modern technologies 

is an attractive and challenging field of research. 

Organoselenium functionalities can be easily introduced in an organic substrate us-

ing electrophilic, nucleophilic or radical selenium species [12]. Among these protocols the 

electrophilic ones, easily generable by the oxidation of a Se-Se bond are probably the most 

studied and applied in a plethora of different synthetic transformations [13]. In order to 

avoid undesired side reactions, several methods were developed to prepare new selenium 

centered electrophiles having a scarcely nucleophilic anion [14]. Recently the catalytic use 

of I2 in the presence of a stoichiometric amount of oxidant (DMSO or H2O2) was demon-

strated to be particularly efficient and ecofriendly in a lot of oxidative transformations, 

including the oxidative Se-Se bond cleavage [15,16]. In this latter case, the reaction is nor-

mally slow but can be efficiently accelerated by the use of conventional heating or micro-

wave irradiation. In the present work we report the first results obtained using BlueLed 

light as alternative source of activation. In particular we used the commercially available 

SynLED photoreactor that allows the parallel screening up to 16 simultaneous reactions. 
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2. Results and Discussion 

The reaction conditions were preliminary optimized using the selenomethoxylation 

of styrene (1a) as a model reaction. The results obtained using different amounts of 

diselenide, iodine, DMSO and MeOH, as well as comparing different activating condi-

tions are summarized in Table 1. The positive role of the BlueLED irradiation is clearly 

evidenced by the comparison of the results reported in entries 1,2 and 3. In this latter case 

an appreciable conversion (63%) was obtained in a very short reaction time respect those 

necessary to convert 1a into 2a at room temperature (76% in 24 h) or at 50°C (80% in 10 h). 

An excess of diselenide (entry 6) as well as of starting material 1a (entry 8) produced a 

positive effect in the overall conversion calculated by NMR (considering in each case the 

stoichiometrically limiting reagent). For a deeper investigation all the reactions were mon-

itored for six hours and the results, reported in graph 1, showed that using an excess of 

the substrate a quantitative conversion can be obtained in 4 h demonstrating that these 

conditions are superior to all the other tested. 

Table 1. Preliminary screening of the reaction conditions. 

 

Entry PhSe)2 I2 DMSO MeOH Conditions Yield% 

1 1 equiv 20 mol% 1 equiv 2 equiv 
Heating 50 °C, 10 

h 
80 

2 1 equiv 20 mol% 1 equiv 2 equiv rt, 24 h 76 

3 1 equiv 20 mol% 1 equiv 2 equiv BlueLED, 3 h 63 

4 1 equiv 20 mol% 3 equiv 2 equiv BlueLED, 3 h 55 

5 1 equiv 20 mol% 1 equiv 10 equiv BlueLED, 3 h 57 

6 2 equiv 20 mol% 1 equiv 2 equiv BlueLED, 3 h 76 

7 1 equiv 10 mol% 1 equiv 2 equiv BlueLED, 3 h 50 

8 0.25 equiv 20 mol% 0.5 equiv 1 equiv BlueLED, 3 h 85 
1 Calculated by NMR based considering the limiting reagent. 

 

Graph 1. Evaluation of the conversion calculated by 1H-NMR of the crude in the first six hours of 

reaction using the conditions depicted in Table 1 entry 8 (light blue); entry 6 (yellow); entry 3 (or-

ange); entry 5 (green); entry 4 (grey); entry 7 (dark blue). 
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With the best conditions in hands, we performed a brief scope investigation using dif-

ferent alcohols and different substrates. All these results are here summarized in Figure 1 

and Figure 2, respectively. 

 

Figure 1. Scope of the alcohols. 

 

Figure 2. Scope of the substrates. 
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The reactivity of different alcohols reflects the relative steric demands affording the 

selenide 2a and 3a in excellent yields, 4a in 55% yield while in the case of t-BuOH only 

traces of 5a was observed. 

Similarly, it was noted that when the substrates 1a–1c were subjected to the condi-

tions optimized for the methoxyselenenylation they afforded 2a, 2b and 2c in 100%, 89% 

and 40% yield, respectively and the most sterically constrained selenide 2d only in traces. 

Interestingly, the reaction from 1c afforded the formation of one of the two possible 

stereoisomers (2c) arising from a stereospecific trans addition to the double bond. This 

demonstrates that the reaction mechanism involves the intermediate formation of a sele-

niranium ion that can be formed only considering the involvement of an electrophilic se-

lenium specie. 

Based on these considerations a mechanism can be speculated as reported in Figure 3. 

The Blue LED irradiation activates the Se-Se bond leading the intermediate formation of 

a radical cation that readily reacts with iodine affording the electrophilic mixture (PhSe-I 

+ PhSe+) that is responsible of the selenenylation reaction, following a classical mechanism 

via seleniranium ion intermediate. 

Iodine is regenerated by recombination of the corresponding radicals or by the oxi-

dation of the iodide promoted by the DMSO. Probably the rate-limiting step of the reac-

tion is the formation of the seleniranium ion, for this reason an excess of substrate pro-

duced an increase of the conversion yields. 

 

Figure 3. Proposed reaction mechanism. 
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In conclusion we demonstrated that the Se-Se bond oxidation mediated by I2/DMSO 

can be activated also by Blue LED irradiation. The small scope reported in this communi-

cation demonstrates an appreciable applicability of the method suggesting its application 
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operating at 400 MHz for 1H and 100.62 MHz for 13C. 1H and 13C chemical shifts (δ) are 

reported in parts per million (ppm) and they are relative to TMS 0.0 ppm and the residual 

solvent peak of CDCl3 at δ 7.26 and δ 77.00 in 1H and 13C NMR, respectively. Data are 

reported as follows: chemical shift (multiplicity, number of hydrogens, coupling constants 

where applicable, and assignment where possible). Abbreviations are as follows: s (sin-

glet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), dt (double of triplet), tt 

(triplet of triplet), m (multiplet), br s (broad signal). Coupling constant (J) quoted in Hertz 

(Hz) to the nearest 0.1 Hz. GC-MS analyses were carried out with an HP-6890 gas chro-

matography (dimethyl silicone column, 12.5 m) equipped with an HP-5973 mass selective 

detector (Hewlett-Packard, Waldbronn, Germany). 

All the reaction were performed using a SynLed parallel Phtoreactor (Merck KGaA, 

Darmstadt, Germany) operating in 465-470 nm spectral range. 

4.1. General Optimized Procedure 

Styrene (0.5 mmol, 57 μL) was added with (PhSe)2 (0.125 mmol, 39 mg), I2 (0.012 

mmol, 3.2 mg) and the appropriate alcohol (0.5 mmol) in closed vial. The reaction mixture 

was stirred for the time indicated in Table 1 and Graph 1 at room temperature (25 °C) 

under BlueLED irradiation. The reactions were monitored by TLC and NMR. The reaction 

mixture was quenched with a water, extracted with EtOAc (× 3), dried with Na2SO4 an-

hydrous and then concentrated under reduced pression. 

4.2. Spectral Data of Selected Compounds 

(2-Methoxy-2-phenylethyl)-phenyl-selane (2a) Yellow oil, 1H-NMR (400 MHz, CDCl3): δ 

= 7.54-7.48 (m, 2H), 7.38-7.24 (m, 8H), 4.37 (dd, J = 5.0 Hz; J = 9.0 Hz, 1H), 3.36 (dd, J = 9.0 

Hz; J = 13.0 Hz, 1H), 3.27 (s, 3H), 3.13 (dd, J = 5.0 Hz; J = 13.0 Hz, 1H) ppm. 13C-NMR (100 

MHz, CDCl3): δ = 140.9; 132.6; 130.7; 129.1; 128.6; 128.1; 126.8; 126.7; 83.2; 57.1; 35.4 ppm. 

GC-MS (70 eV; EI): m/z (relative intensity) = 292 (18) [M]+; 157 (6); 121 (100); 91 (16); 77 

(17). 

(2-Ethoxy-2-phenylethyl)-phenyl-selane (2b) 1H-NMR (400 MHz, CDCl3): δ= 7.46-7.44 

(m,2H), 7.30-7.18 (m, 8H), 4.43 (m, 1H), 3.37-3.28 (m, 3H), 3.07 (m, 1H), 1.15 (t, J = 9.48 Hz, 

3H) ppm. 13C-NMR (100 MHz, CDCl3): δ = 141.6; 132.5; 130.9; 129.0; 128.5; 127.9; 126.7; 

126.6; 81.4; 64.7; 35.6; 15.2 ppm. GC-MS (70 eV; EI): m/z (relative intensity) = 306 (13) [M]+; 

157 (16); 135 (100); 107 (46); 77 (27). 

(2-Isopropoxy-2-phenylethyl)-phenyl-selane (2c) 1H-NMR (400 MHz, CDCl3): δ= 7.55-7.51 

(m, 2H), 7.50-7.25 (m, 8H), 4.60 (m, 1H), 3.55 (m, 1H), 3.35 (dd, J = 8.6 Hz; J = 12.0 Hz, 1H), 

3.12 (dd, J = 4.8 Hz; J = 12.0 Hz, 1H), 1.21 (d, J = 6.0 Hz, 3H), 1.13 (d, J = 6.2 Hz, 3H) ppm. 

13C-NMR (100 MHz, CDCl3): δ = 142.4; 132.2; 131.0; 128.9; 128.4; 127.7; 126.5; 78.7; 69.7; 

36.0; 23.3; 21.3 ppm. GC-MS (70 eV; EI): m/z (relative intensity) = 320 (9) [M]+; 158 (19); 

149 (53); 107 (100); 77 (25). 
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