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Abstract: Breast cancer is the most frequently diagnosed life-threatening cancer in women. As a 

result, there is a critical need for the development of a safe and effective drug therapy for its 

treatment. Curcumin, a secondary metabolite isolated from Curcuma longa, has been shown to 

exhibit an impressively broad range of pharmacological effects. Despite its powerful interaction 

with a diverse set of cellular targets, Curcumin has several drawbacks that limit its potential as a 

therapeutic agent. One of the most common approaches to overcoming these limitations is the 

design and synthesis of novel Curcumin analogs. This study was conducted in support of the 

ongoing search for new molecules that are effective enough for the treatment of Triple-negative 

breast cancer while causing only minor side effects. Hence, several symmetric monocarbonyl 

analogs of curcumin with cyclopentanone, cyclohexanone and 4-piperidone as central core, were 

synthesized by Claisen-Schmidt condensation reaction. Their structures were identified by 

measuring the melting points, as well as using FTIR and UV/VIS spectroscopic techniques. To assess 

the cytotoxic activities of the analogs against MDA-MB-231 Breast Cancer Cells and to identify the 

significant structural features responsible for these molecules’ potency, combined 2D- and 3D-

Quantitative structure-activity relationship (QSAR) models were developed. The generated QSAR 

models demonstrated acceptable internal validation, as well as good external predictive capacity, 

indicating that they can be used to design similar compounds. These results suggest that the 

synthesized candidate drugs have promising cytotoxic potential against MDA-MB-231 cancer cells 

and should be further investigated both in vitro and in vivo. 
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1. Introduction 

According to WHO, carcinoma of the breast is the world’s most prevalent cancer in 

women population. Ref. [1] Human breast cancer is a heterogeneous disease that 

encompasses a diverse group of malignancies with remarkably different biological 

characteristics, affecting multiple signaling pathways via highly complex molecular 

mechanisms. Triple negative breast cancer (TNBC) represents the most aggressive form 

of breast cancer associated with high risk of metastatic progression and tumor recurrence. 

It is concerning that TNBC is a tumor type typically resistant to most of the standard 

therapeutic approaches, and to date it lacks effective targeted therapies, hence having the 

worst prognosis of all breast cancer types [2–5]. 

Considering the highly divergent nature of breast cancer, it is clear that a single-

targeted agent would be inefficient in addressing the complexity of the issue. Hence, 

reasonably, multi-targeted ones are expected and proven to be more proficient in playing 
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this role [6]. From this perspective, natural products depict a vital starting point for the 

discovery or design of potential lead compounds. Of the broad spectrum of this group, it 

is shown that curcumin—a polyphenolic phytochemical from the rhizomes of the 

Curcuma longa sp. is one of the most important members as it was found to possess 

multiple bioactive properties, including enhanced anti-cancer activity, when compared to 

commonly used therapeutic drugs. However, this regulator of numerous targets that 

modulates various cancer hallmarks, possesses a molecular structure which although 

pleotropic, is responsible for curcumin’s poor pharmacokinetic profile and subsequent 

low bioavailability. It is considered that the main reason for its physiological instability is 

the central β-diketone group that is susceptible to keto-enol tautomerism and subsequent 

degradation [4,6–9]. Even though there are several strategies to modify it, it has been 

established that the most influential structural modifications of Curcumin, in terms of 

improving its stability and solubility, are those in which, on the one hand, the “heart” is 

eliminated from the structure, and on the other hand, various alternative substituents on 

the terminal phenyl rings are incorporated. The resulting synthetic products are called 

monocarbonyl analogues of Curcumin—compounds endowed with better chemical 

stability that show more potent bioactive effects [10]. 

Within this study we synthesized several symmetrical cyclic C5 analogues of 

curcumin with cyclopentanone, cyclohexanone and 4-piperidone cores and different 

ortho- and para-substituents. For the purpose of guiding and optimizing drug design 

efforts, a thorough understanding of the structural requirements for anti-cancer activity 

is crucial. Therefore, one of the primary goals of this research was to predict the anti-breast 

cancer activity of our synthetic compounds using previously screened molecules as well 

as to understand the role of different substituents on the benzene rings and the influence 

of the structure of the 5-C linker on that activity. In order to find the statistically significant 

correlation between the structural features of the molecules and their anti-cancer potential, 

predictive 2D- and 3D-QSAR models were developed. These models were used for 

obtaining predictive values for activities of our synthesized MACs, to test their ability of 

inhibiting the growth of cultured MDA-MB-231 human breast cancer cell lines and hence 

evaluate their anti-breast cancer properties. Since the generated QSAR models resulted 

with good values for all of the analogues, we can make initial predictions about them from 

a therapeutic applicative aspect. However, their evaluation in vitro as well as in vivo will 

be critical to assess therapeutic utility.  

2. Materials and Methods 

All the reagents and solvents were of analytical and HPLC grade, obtained from 

Sigma Aldrich (2-bromobenzaldehyde, 2-(trifluoromethyl)benzaldehyde, cyclopentanone, 

cyclohexanone), Merck (4-(dimethylamino)benzaldehyde, ethyl acetate, 1,2-

dichloroethane, benzene, acetonitrile, absolute ethanol), Alfa Aesar (4-Piperidone 

hydrochloride monohydrate, 2-fluorobenzaldehyde) or purchased from the local market 

(ammonium chloride, 96% ethanol, methylene chloride, sodium hydroxide-Alkaloid; 

heptane-Kemika; methanol-Carlo Erba; 2-furaldehyde-Fluka AG Chem. Fabrik CH-9470 

Bechs). All the chemicals were used without further purification. 

The melting point measurements were performed by a Mel-Temp II capillary 

apparatus (Us Lab. devices) and were uncorrected. Infrared spectra were recorded on a 

Perkin Elmer 2000 FT-IR with previously prepared KBr pellets, as well as with the ATR 

(attenuated total reflection) technique using a Golden gate sapphire/diamond system. UV 

spectra were recorded on a Varian Cary 50 Scan UV-Vis spectrophotometer. 

2.1. Chemistry 

The analogues were obtained by coupling 1 eq. of the appropriate ketone with 2 eq. 

of the substituted benzaldehyde via Claisen-Schmidt condensation reaction. The synthetic 
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routes of the base catalyzed reactions are represented by the following Error! Reference 

source not found.: 

 

Scheme 1. Synthetic routes of the base catalyzed reactions. 

2.2. General Procedure for the Synthesis of Analogues with Cyclopentanone and Cyclohexanone 

Cores 

The analogues were prepared using a previously reported procedure by Liang et al. 

with minor modifications. 7.5/10 mmol of cyclopentanone or cyclohexanone were mixed 

with 15/20 mmol of the appropriate benzaldehyde (2-bromobenzaldehyde, 2-

fluorobenzaldehyde, 2-furaldehyde and 4-(dimethylamino)benzaldehyde), in 1:2 ratio, in 

a round bottom flask. After adding 10/15 mL of the reaction solvent (MeOH, abs. EtOH* 

(In the case of 4-dimethylamino analogue absolute ethanol was used as reaction solvent. 

The reaction mixture was refluxed for 2 h on 80 °C followed by obtaining of orange pre-

cipitate.)), the reaction mixture was stirred for 5 min at room temperature, on an 

electromagnetic stirrer, followed by dropwise addition of catalytic amounts (1.5–3 mL) of 

20% (w/v) aqueous NaOH solution in the next 5 min. While adding the base, the mixture 

acquired a yellow color, and after a few minutes yellow precipitate was obtained. The 

reaction mixture was then stirred well on an electromagnetic stirrer, at ambient 

temperature for approximately one hour. After the time had elapsed, the reaction flask 

was lowered and kept into an ice-bath for about 10 min, followed by vacuum filtration of 

the content on a Büchner funnel. The yellow precipitates were washed with saturated 

aqueous NH4Cl solution, dH2O, ice-cold 96% ethanol and cold methanol. After drying, the 

obtained solids were purified by recrystallization from different solvents and solvent 

mixtures. 

2.3. General Procedure for the Synthesis of Analogues with 4-Piperidone Cores 

10 mmol of piperid-4-one hydrochloride monohydrate were first dissolved in 

distilled water (4 mL) in an Erlenmeyer flask, after which ethanol (96%, 20 mL) was added. 

That was followed by the addition of 20 mmol of the appropriate benzaldehyde (2-

bromobenzaldehyde, 2-fluorobenzaldehyde, 2-trifluorobenzaldehyde). 

The mixture was stirred on an electromagnetic stirrer followed by dropwise addition 

of 10% (w/v) aqueous NaOH solution (20 mL, 0.5 mol) over a 20 min-period. While 

aliquots of base were added, the reaction mixture turned yellow, and after a few minutes 

yellow precipitate was obtained. The content of the reaction flask was then stirred on an 

electromagnetic stirrer, at room temperature for approximately 2 h. Afterwards, the 

reaction flask was lowered and kept into an ice-bath for about 10 min, and the content was 

filtered on a Büchner funnel. The yellow precipitates were washed with dH2O and ice-

cold methanol. When dried, the yellow solids were purified with recrystallization from 

96% ethanol and 4:1 96% ethanol/ethyl acetate mixture (2-bromobenzylidene analogue).  
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2.4. Computational Studies 

2.4.1. Dataset 

The dataset chosen for this study contains 36 monocarbonyl Curcumin analogs with 

different central cores and different types of aryl substituents at various positions. Their 

biological activities were extracted from the literature in the form of negative logarithm 

of IC50 (pIC50) [11,12]. The IC50 value represents the mean concentrations that inhibited 

cell growth in MDA-MB-231 human breast cancer cells by 50%.  

To test the predictive ability and robustness of the QSAR models, a test set of 6 

molecules was chosen randomly, and the remaining 29 compounds were used as a 

training set to derive the QSAR models. 

2.4.2. Geometry Optimization 

First, all of the molecules’ structures were drawn and converted to 3D using 

MarvinSketch. They were subjected to conformational analysis in order to find the lowest 

energy conformations. For energy minimization, the MMFF94 method was used, and after 

generating 50 conformers for each molecule, the conformers with the lowest potential 

energy (i.e., global minimum) were further geometrically optimized using the software 

package HyperChem 7.01. The optimization of the geometry for each molecule was 

carried out using the semi-empirical PM3 method and the Polak-Ribiere algorithm with a 

RMS energy gradient of 0.001 Kcal/(Å  mol) in vacuum. 

D-QSAR Methodology 

The optimized geometries of the molecules were used to calculate different types of 

descriptors namely topological, electronic, geometrical and constitutional descriptors 

which encodes different aspects of molecular structure. ChemDes platform and 

Hyperchem software were used for this purpose. 

A common pretreatment process was applied on the calculated descriptors, 

including the removal of descriptors with constant or near-constant values (a variance 

cutoff of 0.001 was used) and the removal of highly intercorrelated descriptors (a 

correlation cutoff of 0.8 was used). This procedure was carried out by creating a 

correlation matrix in Excel software. The descriptors with the highest correlation to the 

pIC50 were chosen for the multiple linear regression analysis to determine the best 2D-

QSAR equation. This regression study was performed using the statistical program SPSS 

that used a dataset made up of 29 training set molecules.  

The developed model was validated internally and externally using common 

validation procedures. Internal validation included calculation of common parameters 

such as R, R2, Adjusted R2, SE, F and Significance F. The test set was used for external 

validation to assess the predictive ability of the model. 

D-QSAR Methodology 

• Quenched Molecular Dynamics and Alignment 

In ligand-based 3D QSAR studies where the conformation eliciting the biological 

response is unknown, one should at least generate a conformational library of all studied 

structures and then examine which conformers provide the best QSAR model [13]. For 

this purpose, each previously optimized structure was subjected to a quenched molecular 

dynamics (QMD) procedure in the Open3DAlign program. The QMD search was 

accomplished by running a number of short molecular dynamics runs using the MMFF94 

force field and TINKER as the molecular mechanics engine. 

Before performing statistical analysis, the 3D structures of all compounds must be 

aligned in 3D space. The structural alignment rule has a direct impact on the accuracy of 

the QSAR model prediction and the reliability of the contour maps.[14] The best fit 

template conformer was chosen from the conformational pool and the conformational 

flexibility for templates was also taken into consideration. Then the whole dataset was 
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aligned to the template by using a mixed algorithm in Open3DAlign program, combining 

both atom-based LAMBDA-like and Pharao pharmacophore-based approaches. 

Compound 2 with the highest alignment O3A_score was chosen as the template molecule, 

onto which the remaining compounds were superimposed and used to build the 3D-

QSAR model.  

• CoMFA Model: 

For building the 3D-QSAR model comparative molecular field analysis (COMFA) 

method was chosen. The method mostly focuses on ligand properties like steric and 

electrostatic ones, and the resulting favorable and unfavorable receptor–ligand 

interactions.[15,16] 

The best-scored alignment molecular set superimposed on conformer 24 of 

compound 2 was subsequently analyzed in Open3DQSAR program using classical 

Coulombic and van der Waals energy molecular interaction fields (MIFs) computed by 

molecular mechanics method MMFF94. 

In a more detailed view, the aligned ligand ensemble was first placed in a 2 Å  step 

size 3D cubic grid box with a 5 Å  gap around the largest molecule in all directions. The 

steric (Van Der Waals) and electrostatic (Coulombic) interaction energies were calculated 

for each molecule at each grid point using an sp3 hybridized carbon atom probe and a 

volume-less probe with a +1 charge, respectively. These steric and electrostatic interaction 

energies were considered as independent variables (CoMFA descriptors). 

In order to reduce the noise hidden in the PLS matrix and thus reduce the 

computational time, the data was pretreated prior to the creation of the CoMFA model 

and then variable clustering (Smart Region Definition (SRD) procedure) and selection 

(Fractional factorial design (FFD)) procedures were applied. FFD selection aims at 

selecting the variables which have the largest effect on predictivity, and can operate on 

both single variables or on groups identified by a previous SRD run. 

Finally, PLS analysis was engaged to obtain a correlation between the descriptors 

derived by CoMFA (independent variables) and pIC50 values (dependent variable). 

Open3DQSAR produces a PLS model through the Non-linear iterative partial least 

squares (NIPALS) algorithm. [17] Finally, the CoMFA color contour maps were derived 

for the steric and electrostatic fields. 

Without a proper statistical validation, no model can be reliably used for biological 

activity interpretation and prediction and thus considered true. For the internal validation 

statistical parameters including F-ratio test, R2, SDEP were computed. Cross-validation 

was performed by applying leave-one-out (LOO) and it was expressed with coefficient of 

determination Q2. The predictive power of each PLS model was evaluated against the 

external test set and expressed both as R2pred and as SDEP. 

3. Results 

3.1. Synthesis 

2Е, 5Е)-2,5-bis(2-bromobenzylidene)cyclopentanone:  

yield: 66,68%, yellow needles, rec. solvent CH2Cl2/CH3OH 4:1 (mixture), m.p. 165–

166 °C; FTIR bands: ν(C=O) 1693 cm−1, ν(C-Br) 759 cm−1 and 747 cm−1; ATR-FTIR bands: 

ν(C=O) 1692 cm−1, ν(C-Br) 758 cm−1 and 747 cm−1; UV-Vis band maximums: λ = 242 nm 

(π→π*), λ = 342 nm (n→π*). 

(2Е, 6Е)-2,6-bis(2-fluorobenzylidene)cyclohexanone:  

yield: 25.33%, yellow crystals, rec. solvent CH3OH, m.p. 85–89 °C; FTIR bands: ν(C=O) 

1667 cm−1, ν(C-F) 1250–1100 cm−1; ATR-FTIR bands: ν(C=O) 1666 cm−1, ν(C-F) 1250–1100 

cm−1; UV-Vis band maximums: λ = 231 nm (π→π*), λ = 317 nm (n→π*). 

(3Е, 5Е)-3,5-bis(2-fluorobenzylidene)-4-piperidone: 

yield: 47,29%, yellow needles, rec. solvent 96% EtOH, m.p. 134–135.5 °C; FTIR bands: 

ν(C=O) 1674 cm−1, ν(N-H) 3304 cm−1, ν(C-F) 1350–1100 cm−1, ν(C-N) 1235 cm−1; ATR-FTIR 
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bands: ν(C=O) 1673 cm−1, ν(N-H) 3303 cm−1, ν(C-F) 1250–1100 cm−1, ν(C-N) 1234 cm−1; UV-

Vis band maximums: λ = 233 nm (π→π*), λ = 327 nm (n→π*). 

(3Е, 5Е)-3,5-bis(2-trifluoro benzylidene)-4-piperidone:  

yield: 61,75%, yellow needles, rec. solvent 96% EtOH, m.p. 167–168 °C; FTIR bands: 

ν(C=O) 1676 cm−1, ν(N-H) 3272 cm−1, ν(C-F) 1350-1100 cm−1, ν(C-N) 1100 cm−1; ATR-FTIR 

bands: ν(C=O) 1661 cm−1, ν(N-H) 3302 cm−1, ν(C-F) 1350–1100 cm−1, ν(C-N) 1095 cm−1; UV-

Vis band maximums: λ = 227 nm (π→π*), λ = 302 nm (n→π*). 

(2Е, 6Е)-2,6-bis(4-dimethylamino benzylidene)cyclohexanone:  

yields: /; 47.47%; 78.18%; orange and deep red needles, rec. solvents: 1° 2:3 

benzene/EtOAc (mixture), 2° 5:4 96% EtOH/ 1,2 EDC (mixture), 3° 1,2 EDC, m.p. 1° 248–

250 °C, 2° 250–252 °C, 3° 248–250 °C; FTIR bands: ν(C=O) 1645 cm−1, 1646 cm−1, 1646 cm−1; 

ν(C-N) 1350-1000 cm−1; ATR-FTIR bands: ν(C=O) 1643 cm−1, 1643 cm−1, 1643 cm−1; ν(C-N) 

1350–1000 cm−1; UV-Vis band maximums: λ = 315 nm (π→π*), λ = 423 nm (n→π*). 

(2E,6E)-2,6-bis(2-bromobenzylidene)cyclohexanone:  

yields: 57%; 62%; 71%; yellow needles, rec. solvents: 1st rec. 5:2 CH3OH/CH₂Cl₂ 

(mixture), 2nd rec.: 1° 1:1 benzene/ heptane (mixture), 2° CH3CN, m.p. 1st rec. 130–132 °C, 

2nd rec. 1° 132–133 °C, 2nd rec. 2° 131–132 °C; FTIR bands: ν(C=O) 1662 cm−1, 1661 cm−1, 

1670 cm−1; ν(C-Br) 767 cm−1 and 731 cm−1; 767 cm−1 and 731 cm−1; 767 cm−1 and 732 cm−1; 

ATR-FTIR bands: ν(C=O) 1661 cm−1, 1661 cm−1, 1670 cm−1; ν(C-Br) 767 cm−1 and 731 cm−1; 

766 cm−1 and 730 cm−1; 767 cm−1 and 732 cm−1; UV-Vis band maximums: λ = 207 nm (π→π*), 

λ = 312 nm (n→π*). 

(2Е, 5Е)-2,5-bis(2-fluorobenzylidene)cyclopentanone:  

yield: 68%, yellow needles, rec. solvent 4:1 CH₂Cl₂/CH3OH (mixture), m.p. 210–

212 °C; FTIR bands: ν(C=O) 1694 cm−1, 1625 cm−1, ν(C-F) 1250 cm−1 ATR-FTIR bands: ν(C=O) 

1694 cm−1, 1622 cm−1, ν(C-F) 1250 cm−1; UV-Vis band maximums: λ = 229.9 nm (π→π*), λ 

= 344 nm (n→π*). 

(3E,5E)-3,5-bis(2-bromobenzylidene)-4-piperidone:  

yield: 56.11%, yellow needles, rec. solvent 4:1 96% EtOH/ EtOAc, m.p. 162–163 °C; 

FTIR bands: ν(C=O) 1669 cm−1, ν(N-H) 3312 cm−1, ν(C-Br) 1075–1030 cm−1, ν(C-N) 1194 

cm−1; ATR-FTIR bands: ν(C=O) 1667 cm−1, ν(N-H) 3313 cm−1, ν(C-Br) 1075–1030 cm−1, ν(C-

N) 1192 cm−1; UV-Vis band maximums: λ = 242 nm (π→π*), λ = 394 nm (n→π*). 

(2Е,5Е)-2,5-bis(2-furylmethylene)cyclopentanone:  

yield: 79%, golden yellow needles, rec. solvent CH3OH, m.p. 165–166 °C; FTIR bands: 

ν(C=O) 1683 cm−1, 1625 cm−1, ν(C-O) 1261 cm−1, δ(C-O) 753 cm−1; ATR-FTIR bands: ν(C=O) 

1679 cm−1, 1625 cm−1, ν(C-O) 1259 cm−1, δ(C-O) 751 cm−1; UV-Vis band maximums: λ = 244 

nm (π→π*), λ = 394 nm (n→π*). 

3.2.2. D-QSAR 

The selected 2D model is represented by the following Equation (1):  

pIC50 = − 1.626∙MATS3s + 0.827292∙TDB10u + 0.100042∙RDF60p − 

2.87514∙SCH-6 + 2.319506∙BIC4 + 0.102048∙nHBint6 − 0.18775∙CrippenLogP − 

4.035 

(1) 

According to the results above, the biological activity of the monocarbonyl analogs 

under study was explained by seven descriptors, whose positive or negative regression 

coefficient values indicate a positive or negative contribution to the value of pIC50, 

respectively. 

The first descriptor is based on the topological distance and the ionization potential. 

It is a 2D autocorrelation descriptor that associate the presence of polarizable pairs of 

atoms, at specific topological distance. [18] So, according to its negative correlation with 

the activity, the higher the ionization potential of the atoms (less electronegative) that 

share three covalent bonds will be, the lower the activity of the analogs will be. 

The second descriptor is a 3D topological distance-based autocorrelation descriptor 

(also called 3D-TDB) that is related with the topological and geometric distances. 
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The third descriptor, which belongs to the RDF descriptors, highlights the 

significance of the distribution of atomic polarizabilities within a radius of 6.0 Å . Its 

positive correlation with the activity means that increasing the polarizability of atoms is 

favorable.  

SCH-6 is simple 6th order topological descriptor based on interatomic distances 

calculated by the bonds between them, representing molecular connectivity as a chemical 

graph. [19] The order 6 represents the number of edges in the graph which indicates the 

branching. The negative value of its coefficient indicates its negative impact on biological 

activity.  

The next descriptor is a topological descriptor, known as Bond information content 

index, that represents the measures of number of bonds and their multiplicity in the 

chosen structural fragment. It can differentiate molecules according to their size, degree 

of branching, and flexibility [20]. 

nHBint6 is a 2D E-state descriptor, and is related to the electro-topological state of 

hydrogens capable of making a hydrogen bond with a path length of 6 and which may be 

involved in intermolecular contacts and interactions and, in addition, contribute to the 

general values of biological and physical-chemical properties [21]. 

The last descriptor is a 1D Constitutional descriptor, known as Crippen’s LogP. This 

descriptor is considered an informative parameter of the solubility tendency of a 

compound. The lower the CrippenLogP, the more hydrophilic the molecule is and the 

greater its tendency to dissolve in the aqueous phase. The negative CrippenLogP 

coefficient indicates that lipophilic molecules degrease inhibitory activity. 

The values of the statistical parameters of the internal and external validation for 

MLR model are mentioned in the Error! Reference source not found.. All of the 

parameters have acceptable values. 

Table 1. Parameters for internal and external validation of the 2D-QSAR model. 

Statistical Parameters Values 

R 0.881 

R2 0.775 

Adjusted R2 0.700 

SE 0.267 

F 10.336 

Significance F 1.4E-05 

R2 pred 0.7827 

3.3.3. D-QSAR 

Generated CoMFA contour maps are shown in the Figure 1. 

  

(a) (b) 
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Figure 1. CoMFA contour maps (a) Representation of the steric fields; (b) Representation of the 

electrostatic fields. 

The steric fields are represented by green- and yellow-colored contours, in which 

green areas indicate regions where increased steric hindrance would increase the activity, 

while the yellow areas suggest regions where the bulky groups are not favored. 

The electrostatic fields are represented by blue and red color contours, in which blue 

areas define a region where positively charged substituent increases activity, while 

opposite the red areas define a region where negatively charged substituent increases 

activity. These contour maps give us some general insight into the nature of the receptor 

ligand binding region.  

The generated QSAR model demonstrated acceptable internal validation, as well as 

good external predictive capacity (Table 2), indicating that it can be used to design similar 

groups of compounds. 

Table 2. Parameters for internal and external validation of the 2D-QSAR model. 

Statistical Parameters Values 

R 0.979 

R2 FFDSEL 0.959 

Q2loo FFDSEL 0.401 

SDEP 0.371 

R2 pred 0.907 

SDEP pred 0.167 

Finally, in Table 3 are represented the predicted activities of our synthesized 

molecules. 

Table 3. The predicted pIC50 values of the analogs. 

Analogue 
Predicted pIC50 Values 

(µmol/L) 

(3Е, 5Е)-3,5-bis(2-fluorobenzylidene)-4-piperidone 5.46 

(3Е, 5Е)-3,5-bis(2-bromobenzylidene)-4-piperidone 5.19 

(2Е, 6Е)-2,6-bis(2-fluorobenzylidene)cyclohexanone 5.15 

(2Е, 6Е)-2,6-bis(2-bromobenzylidene)cyclohexanone 5.14 

(3Е, 5Е)-3,5-bis(2-trifluoromethylbenzylidene)-4-piperidone 5.13 

(2E,5E)-2,5-Bis(2-furylmethylene)cyclopentanone 5.07 

(2Е, 6Е)-2,6-bis(4-dimethylaminobenzylidene)cyclohexanone 4.54 

(2Е, 6Е)-2,6-bis(2-fluorobenzylidene)cyclopentanone 4.36 

(2Е, 6Е)-2,6-bis(2-bromobenzylidene)cyclopentanone 4.29  

4. Discussion 

Based on the combination of the 2D- and the 3D- QSAR models, we can make some 

assumptions for the general SAR trend. Both, presence of groups on the aromatic rings 

and the linker between the aromatic rings have contributions in determining the 

anticancer activity of the analogues. For analogues with similar substituent, it is noticeable 

that reduction of the core size implies lower anti-cancer activity. On the opposite, 

replacement with a heterocyclic one results with a strong cytotoxic effect. On the other 

hand, for analogues, with similar core, but different ortho-substituent on the aromatic 

rings, there is a positive dependence between the inhibitory activity and the electron-

accepting properties of the substituent, which indicates that presence of more 

electronegative element(s) in the substituted group results in more pronounced anti-
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cancer properties of the analogue. Another observation that can be derived from the 3D 

electrostatic fields is that presence of bulky groups is unfavorable at the ortho-position.  

In conclusion, the rational design of our MACs was supported within this study, and 

it was confirmed that they have promising ability to combat breast cancer. Regardless of 

our findings, for future feasible applicability, it’s crucial to evaluate them in vitro as well 

as in vivo.  
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