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Abstract: Metal-organic framework Zn2(BDC)2(DABCO) was employed as a reusable heterogene-

ous acidic catalyst in the acylation reaction of various benzaldehydes with acetic anhydride under 

microwave irradiation. The outstanding features of this efficient solvent-free method are short re-

action time, ease of product separation, greatest yields, and the ability to reuse the catalyst several 

times. 
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1. Introduction 

In order to carry out the selective reactions in the desired position during multi-step 

procedures, it is necessary to protect parts of the molecules with various functional groups 

so they do not participate in the main reaction and also prevent the production of side 

products [1]. Compounds containing aldehydic carbonyl groups are commonly protected 

by transforming them into acetals, dithioacetal, oxathioacetals, and diacetate (acylal) [2]. 

The characteristic of stability in neutral environments, the comfort of preparation, and 

multiple applications, including as initiating materials for the Diels–Alder reaction, inter-

mediates in industrial processes, geminal diacetates (acylals) have been highlighted 

among the various protection approaches of aldehydes [2,3]. Ethanethiol, acetic anhy-

dride, alcohol are some of the reagents used to protect aldehydes [4]. The use of protic or 

Lewis acid catalysts such as AC-N-SO4H [5], magnetic Fe3O4@C-600-SO3H microspheres 

[6], SiO2-NaHSO4 [7], STO/Al-P [8], poly(p-hydroxybenzaldehyde-co-p-phenol sulfonate) 

[9], tungstosulfonic acid (TSA) [3], hexabromoacetone (HBA) [1], (MNPs-PSA) [2], 

5,10,15,20-tetrakis(pentafluorphenylporphyrin) iron (III) chloride (Fe5F) [10], plays an es-

sential role in the better progress of the chemoselective reactions. Heterogeneous acid cat-

alysts have advantages over their homogeneous type, such as simple separation via 

straightforward filtration, possible reuse, and convenient provision, which makes them 

an ideal choice for catalyzing synthesis reactions [4]. Metal-organic frameworks (MOFs) 

are a new type of hybrid material composed of metal nodes and organic ligands [11,12]. 

Since ligands and constituent metals are available in a wide variety, these versatile and 

adjust-able crystalline structures can be used for a variety of applications [13], including 

gas ab-sorption and storage [14,15], hydrocarbon separation [16], luminescence [17,18], 

sensors [19,20], drug delivery [21,22], energy storage [23], enzymes encapsulation [24,25], 

and catalysts [26]. In recent years, many studies have discussed the application of MOFs 

as heterogeneous catalysts in multi-step synthesis reactions, especially in the liquid phase. 

It has been found that the stability of the structure of MOFs in different chemical condi-

tions, the presence of positive metal ions, high porosity, high surface-to-volume ratio, and 

the various preparation methods significantly contribute to the appropriate catalytic 
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performance of the MOFs [27]. Continuing our efforts to investigate the catalytic perfor-

mance of MOFs, we report a simple and efficient approach for protecting the carbonyl 

group in a range of benzaldehyde compounds using M2(BDC)2(DABCO) as a Lewis acid 

catalyst under microwave irradiation conditions (Scheme 1). To investigate the catalytic 

performance of transition metals, such as Ni, Cu, Co, and Zn in M2(BDC)2(DABCO) struc-

tures as Lewis acid catalysts, we investigated benzaldehyde acylation in the presence of 

Ni2(BDC)2(DABCO), Cu2(BDC)2(DABCO), Co2(BDC)2(DABCO), and Zn2(BDC)2(DABCO). 

 

Scheme 1. Acylation of benzaldehyde employing MOFs under microwave conditions. 

2. Materials & Methods 

Protection of benzaldehydes with acetic anhydride under microwave irradiation; 

general procedure: Amount of 3 mmol acetic anhydrides, 1 mmol benzaldehyde, and 0.03 

g M2(BDC)2(DABCO) (M = Ni, Cu, Co, and Zn) catalyst was added in a flask and then 

exposed to microwave irradiation. The progress of the reaction was observed by GC. After 

the ending of the reaction, dichloromethane (3 × 5 mL) was added to the reaction mixture 

and the catalyst was separated by filtration. The organic phase was washed with saturated 

KHCO3 solution (15 mL), dried over anhydrous MgSO4 and concentrated under reduced 

pressure in a rotary evaporator to afford the crude product. The yields were isolated and 

calculated as mmol of purified product with respect to mmol of initial benzaldehydes. 

3. Results and Discussion 

To determine which catalyst is the best for the acylation of benzaldehyde, 1 mmol 

benzaldehyde was examined with 3 mmol acetic anhydrides in the presence of 10 mg 

MOFs such as Ni2(BDC)2(DABCO), Cu2(BDC)2(DABCO), Co2(BDC)2(DABCO), and 

Zn2(BDC)2(DABCO), under both room temperature and microwave conditions (Table 1). 

Table 1. Investigating the performance of the MOFs for the acylation reaction a. 

Entry Catalyst 
Room Temperature/Mi-

crowave 
Time (h/min) Yield (%) b 

1 Ni2(BDC)2(DABCO) 
R.T 24 h 100 

MW 19 min 93 

2 Cu2(BDC)2(DABCO) 
R.T 33 h 94 

MW 20 min 90 

3 Co2(BDC)2(DABCO) 
R.T 30 h 97 

MW 25 min 92 

4 Zn2(BDC)2(DABCO) 
R.T 10 h 100 

MW 13 min 100 
a At room temperature and solvent-free condition. b Yields were determined by GC. 

With respect to the time and reaction yield, Zn2(BDC)2(DABCO) was the best among 

the others under microwave irradiation conditions. In addition, the reaction in solvent-

free conditions and ambient temperature in the presence of different amounts of 

Zn2(BDC)2(DABCO) catalyst, including 10, 20, 30, and 40 mg and various quantities of 

acetic anhydride including 1, 2, 3, and 4 mmol was investigated. The results indicated that 

the optimum amounts of catalyst and acetic anhydride are 30 mg and 3 mmol, respectively. 

To assess the solvent effect, acylation of benzaldehyde (1 mmol) with acetic anhydride (3 
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mmol) in presence of 30 mg of Zn2(BDC)2(DABCO) catalyst was analyzed as a model re-

action under different environmental conditions (Table 2). 

Table 2. Investigation of acylation of benzaldehyde with acetic anhydride a. 

 
Entry Solvent Condition Time (h) Yield (%) b 

1 EtOH r.t 16.5 54 

2 n-Hexane r.t 22 73 

3 EtOAc r.t 20 57 

4 CH3CN r.t 18 52 

5 Solvent-free r.t 6 100 

6 Solvent-free ball-milling, r.t 3 93 

7 Solvent-free MW 7 min 100 
a benzaldehyde (1.0 mmol), acetic anhydride (3.0 mmol), and Zn2(BDC)2(DABCO) (30 mg) as catalyst 

were used. b The conversion was determined by GC analysis of the crude product. 

In terms of time and reaction yield, the best conditions were found in entry 7. The 

reaction was completed in just 7 min under microwave irradiation and Solvent-free con-

dition with 30 mg of Zn2(BDC)2(DABCO) as the catalyst. Inspired by our introductory 

results, we subjected numerous of benzaldehydes to acylation under the optimized con-

ditions with the Zn2(BDC)2(DABCO) catalyst as summarized in Table 3. 

Table 3. Acylated derivatives of benzaldehydes in the presence of MOF a. 

Entry Substrate Product Time (min) Yield (%) b 

1 
  

7 92 

2 

  

6 96 

3 

  

7 94 

4 
 

 

10 91 

5 

 
 

8 91 

6 

  

9 85 

7 

  

8 90 
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a benzaldehyde (1.0 mmol), acetic anhydride (3.0 mmol), and Zn2(BDC)2(DABCO) (30 mg) as catalyst 

were used under microwave irradiation. b The conversion yield was determined by GC analysis of 

the crude product. 

4. Conclusions 

In summary, it was found that the catalytic activity of the organic metal framework 

Zn2(BDC)2(DABCO) under solvent-free conditions and microwave irradiation is signifi-

cant in the protection reactions of benzaldehydes. The unique advantages of this protocol 

include short reaction time, ability to recover and reuse the catalyst, solvent-free condi-

tions, high efficiency, simple method. 
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