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Abstract: A method of a “P-ligand free”, Pd(OAc)2-catalyzed P–C coupling reactions under MW 

conditions was investigated in our group. In our latest work this procedure was extended to dihal-

ogenobenzenes. Copper-promoted reactions were studied experimentally and by quantum chemi-

cal calculations. 
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1. Introduction 

The transition metal-catalyzed, P–C cross coupling reactions between vinyl halides 

and dialkyl phosphites were described 40 years ago by Hirao. The first reactions were 

carried out between vinyl/aryl halides and dialkyl phosphites in the presence of Pd(PPh3)4 

catalyst [1,2]. Then, more phosphorus compounds, e.g., aryl phosphonates, -phosphinates 

and tertiary phosphine oxides were also prepared effectively [3–6]. Later on, several Pd 

compounds in combination with different types of P-ligands were applied [3–6]. In these 

reactions, the active catalyst was formed in situ. In the past years, microwave (MW) tech-

nology was also applied in organic chemistry, that resulted in excellent yields during 

shorter reaction times [3–6]. Some nickel and copper salt catalyzed coupling reactions 

with added P- or N-ligands were also published [3–6]. 

2. Pd(OAc)2-and NiCl2-Catalyzed, Directly Added “P-ligand Free” P–C Coupling Re-

actions 

Our group suggested a new Pd(OAc)2-catalyzed, MW-assisted method for the P–C 

coupling reactions in 2013. These reactions were named “P-ligand free” Hirao reactions 

because of the lack of typically applied mono- or bidentate P-ligands [7]. They studied the 

coupling reactions between aryl derivatives and different >P(O)H-reagents, when the P-

reagents were applied in some excess (Scheme 1) [7,8]. 

 

Scheme 1. “Ligand free” P–C coupling reactions in the presence of Pd(OAc)2 precursor. 
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It is known that the catalytic cycle of the P–C coupling reactions is very similar to C–

C couplings; the main steps are oxidative addition, ligand exchange and reductive elimi-

nation [9,10]. However, by our group, the entire, detailed catalytic cycle was calculated on 

the model reaction of the Pd(OAc)2-promoted coupling of bromobenzene (PhBr) and di-

ethyl phosphite (DEP) or diphenylphosphine oxide (DPPO) [11–13]. It was found, the nec-

essary quantity of the >P(O)H-reagent’s excess is 3 times of the catalyst precursor’s 

amount. The P-reagent served as reduction agent and as the catalyst ligands via its triva-

lent tautomeric form (>POH). It all means, that if 10% of Pd(OAc)2 is applied, 30% of 

the >P(O)H-reagent is needed, all together 1.3 equivalents [11–13]. We also studied the 

kinetics of the coupling reactions, and an induction period was found (Figure 1) [14]. In 

the first ~22 min the active catalyst (1) may be formed in situ from the Pd-precursor and 

the tautomeric form of the P-compoud. We confirmed the reactivity order of the aryl hal-

ides: iodobenzene (PhI) was the most, PhBr was less, and chlorobenzene (PhCl) was the 

least reactive. We successfully promoted the PhBr and DPPO coupling reaction with po-

tassium iodide (KI) at 100 °C [14]. 

 

Figure 1. Induction period of the Hirao reaction with forming the active catalyst. 

After the previous results, we extended this, Pd(OAc)-catalyzed, “P-ligand free”, 

MW-assisted method to different bromo-halogenobenzenes. 1,4-, 1,3- And 1,2-dibromo-

benzenes and the analogous bromo-iodo or bromo-chloro derivatives were reacted with 

DEP and DPPO too (Scheme 2.) [15]. We found that in most cases, the costly bromo-iodo-

benzenes could be replaced by the cheaper dibromo derivatives. The bis(>P(O)-benzene) 

species were synthesized directly or from the isolated mono(>P(O)-bromophenyl) deriv-

atives. Three new products were prepared and characterized. 
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Scheme 2. The “ligand free” P–C coupling reactions of different bromo-halogenobenzenes. 

As a variation, “ligand free” nickel-catalyzed (e.g., NiCl2), MW-assisted methods 

were also published earlier by our group [13,16–18]. The mechanism was calculated, and 

unexpectedly, a Ni(II)→Ni(IV) transition was observed instead of the earlier assumed 

Ni(0)→Ni(II) formation. 

3. Cu-Catalyzed Hirao Reactions 

After the Pd- and Ni-catalyzed accomplishments, we investigated the use of copper 

catalysts, which could be a cheaper option. Due to the copper’s lower reactivity, the most 

reactive aryl halide PhI had to be used. First experiments were carried out in the presence 

of Cu(I)-salts (e.g., CuI, CuCl and CuBr) at 165 °C under MW conditions [19]. Using 20% 

of CuBr as the catalyst precursor, and 2 equiv. of NEt3 as the base, seemed to be the best 

(Scheme 3). The mechanism of the reaction was also studied by quantum chemical calcu-

lations. 

 

Scheme 3. Hirao reaction of iodobenzene and secondary phosphine oxides in the presence of dif-

ferent Cu-precursors. 

The three different ways of possible ligations of Cu(I) may be seen in Figure 2. The 

calculation results suggested that complexes 2 and 6 may catalyze the coupling reaction, 

but complex 6 is more dominant according to experiments. It can be seen, Cu(I) → Cu(III) 

oxidation happens in the oxidative addition step [19]. 
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Figure 2. Three possible routes of Cu(I)-salts catalyzed, P–C coupling reactions. 

Later on, Cu(II)-salts (e.g., CuSO4, Cu(OAc)2xH2O, CuCl2x2H2O, CuSO4x5H2O) were 

studied in the coupling reactions (Scheme 3) [20]. It was concluded that applying 20% of 

CuSO4 or Cu(OAc)2xH2O as catalysts, together with 2 equiv. of NEt3 is the best combina-

tion. 

The earlier mentioned Cu(I) analogous reaction mechanism was assumed also in the 

Cu(II) case: in the oxidative addition step, the Cu2+ would be oxidized formally to Cu4+. 

However, this step was not feasible, between intermediates 15 and 17 no real TS (16) was 

found on the potential energy surface (Figure 3) [20]. 

 

Figure 3. A “broken” mechanism. 

Searching for a valid mechanism for the Cu(II)-precursors-catalyzed reactions, we 

looked for an alternative interpretation: a Cu(II) → Cu(I) reduction was assumed by the 

secondary phosphine oxide, accompanied by the P(III) → P(V) oxidization (Scheme 4) [20]. 
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Scheme 4. The assumed Cu2+ → Cu+ reduction. 

4. Conclusions 

The “ligand free”, Pd(OAc)2-catalyzed method was successfully used for synthesis of 

bromophenylphosphine oxides and phosphonates. The neglected Cu(I) and Cu(II)-salts 

catalyzed P–C coupling reaction of iodobenzene with secondary phosphine oxides (dia-

rylphosphine oxides) was elaborated under MW irradiation. The investigated reactions 

were the most efficient, when the P-reagent and NEt3 were used in a 1:2 molar ratio. The 

mechanisms were studied by quantum chemical calculations. 
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