The Hirao P-C coupling reaction
The first P-C coupling reactions were described by Hirao et al. [1, 2]. They applied Pd(PPh;), as the catalyst. Due to the air- and moisture-sensitive Pd(PPh;),, various
Pd-precursors with directly added P-ligands, and later on, Ni- or Cu- precursors with P- and N-ligands were used. In these methods the active catalyst is formed in
situ [3].

Using Pd(0Ac), as the catalyst - the “P-ligand free” reactions

“+» The Keglevich group found that, the Hirao reaction may take place under MW conditions, in the presence of Pd(OAc), without the addition of expensive
P-ligands, if the P-reagent is used in an excess [4-8]. The catalytic cycle was evaluated by quantum chemical calculations [6, 7]. It was found, the necessary

quantity of the >P(O)H-reagent’s excess is three times of the catalyst precursor’s amount. The P-reagent served as reduction agent and as the catalyst ligands
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precursor and the tautomeric form of the P-reagent [3]. Y = H, 4-M¢O, 3-McO, 4-Pr, 4-Et, 4-Me, 3-Cl, 4-F, 3-F, 4-CO,Et, 3-CO,Et,
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+ We also observed the phosphinoylation of Phl with Ph,P(O)H at 100 -C was complete after 1 h, but in the case of PhBr, there was no reaction. So, we
promoted the coupling between PhBr and Ph,P(O)H by KI additive [8]. Unfortunately, activation of the chlorobenzene was not efficient —
Reactivity order: PhI>PhBr>>PhCl.

Using different copper-salts as the catalyst

In this work, we investigated the use of copper catalysts, which could be a cheaper option. Due to the copper’s lower reactivity, the most reactive aryl

halide PhI had to be used.
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’ However, this step was not feasible [11].
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calculations [10]. B‘@ reduction was assumed by the secondary phosphine oxide,
accompanied by the P(III) — P(V) oxidization [11].
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Conclusions

s The “ligand free”, Pd(OAc),-catalyzed method was successfully used for synthesis of bromophenylphosphine oxides and phosphonates.
* The neglected Cu(I) and Cu(ll)-salts catalyzed P-C coupling reaction of iodobenzene with secondary phosphine oxides (diarylphosphine oxides) was elaborated
under MW irradiation. The investigated reactions were the most efficient, when the P-reagent and NEt; were used in a 1:2 molar ratio. The mechanisms were

studied by quantum chemical calculations.
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