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Abstract: Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared as 

a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and ac-

ridinedione derivatives. High efficiency, short reaction time, and easy separation are significant fea-

tures for using g-C3N4@L-arginine as a catalyst in one-pot multicomponent reactions. Synthesized 

nanocatalyst was detected by numerous analyses, such as FE-SEM (Field Emission Scanning Elec-

tron Microscopy), EDX (Energy Dispersive X-ray spectroscopy), XRD (X-Ray Diffraction analysis), 

TGA (Thermo Gravimetric Analysis), and FT-IR (Fourier Transform Infrared Spectroscopy). G-

C3N4@L-arginine nanocatalyst was reused five times in the reaction with no apparent decrease in 

reaction yield, which shows acceptable recyclability. 
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1. Introduction 

In the last decades, heterogeneous catalysts have been noticed because of large-scale 

production and selective product formation [1,2]. G-C3N4 is a widely used support for 

catalytic entities due to high physical and thermal stability, low density, versatile perfor-

mance, and the ability to recyclability. Moreover, the preparation of g-C3N4 mostly per-

form by Cyanamid, urea, dicyanamide, melamine, and thiourea [3]. For increasing the 

efficiency of catalytic performance of g-C3N4 in organic reactions, it is suggested to modify 

this catalyst–supported by organic compounds [4–8]. For increasing the efficiency of cat-

alytic performance of g-C3N4 in organic reactions, it is suggested to modify this catalyst–

supported by organic compounds. 

Significantly, L-arginine is a semi-essential amino acid in living organisms [9]. While 

the guanidine group in L-arginine is the precursor for synthesizing nitrogen derivatives. 

Using L-arginine with g-C3N4 as a catalyst- support can decrease the cost and toxicity. 

Among other benefits of composite productions with L-arginine, it should be mentioned 

that making composite with this amino acid can increase thermal stability and molar heat 

capacities. Although, on the other hand, it can reduce the thermal expansion coefficient. 

Moreover, the utilization of composites is one of the best ways for synthesizing heterocy-

clic compounds [10–13], while heterocyclic compounds have been considered essential 

groups of organic materials. Also, They have biological activities which could be effective 

in the treatment of different diseases. What makes these compounds more important than 

others is their application in various fields such as medicines, veterinary products, disin-

fectants, and antioxidants. There are several ways of synthesizing heterocyclic com-

pounds including the multi-stages and one-pot multicomponent reactions. Lately projects 

Citation: Bijari, F.; Talebi, M.; Gha-

furi, H.; Tajik, Z.; Hanifehnejad, P. 

Graphitic carbon nitride-supported 

L-arginine: synthesis, charachteriza-

tion, and catalytic activity in multi-

component reactions. 2022, 4, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s):  

Published: 15 November 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Chem. Proc. 2022, 4, x FOR PEER REVIEW 2 of 4 
 

 

indicate that multicomponent reactions would be the best way for preparing heterocyclic 

compounds. 

Multicomponent reactions have been mostly used for producing heterocyclic com-

pounds because of their advantages including atom economic, efficiency, and convergent 

[14–18]. Pyranopyrazoles are nitrogen-containing heterocyclic compounds with various 

properties such as anti-cancer, anti-inflammatory, anti-bacterial, antioxidant, and antihy-

pertensive. Knoevenagel condensation, Micheal addition, and cyclization are the main 

procedures for making pyranopyrazoles derivatives. Various catalysts can be utilized to 

prepare pyranopyrazole and its derivatives by multicomponent reactions such as cetyltri-

methylammonium chloride (CTACl), montmorillonite K10, agave leaf ash, cyto-

sine@MCM-41, Et3N, and PTSA [19–24]. 

Other heterocyclic compounds with biological activities that can be produced with 

multicomponent reactions are Acridinedione derivatives [25]. They are nitrogen–medi-

ated heterocyclic compounds with a vast spectrum of pharmaceutical and biological ac-

tivities namely anti-tumor, SIRT1 inhibitors, anticancer, and antimicrobial agents [26–29]. 

There are different precursors as heterogeneous catalysts for preparing acridinedione in-

cluding f-MWCNT, Amberlyst -15, CTAB, and Proline [30–33]. Usually, recent methods 

can cover problems of the latest projects such as harsh conditions, long reaction time, and 

using toxic solvents. So, new methods for synthesizing pyranopyrazole and acridinedione 

derivatives are a critical challenge in chemistry society. Therefore, in this research, we 

have synthesized g-C3N4@L-arginine nanocomposite and applied as a catalyst in the syn-

thesizing pyranopyrazole and acridinedione derivatives in a high yield. The schematic of 

g-C3N4@L-arginine is shown in Scheme 1. 

 

Scheme 1. Schematic of g-C3N4@L-arginine. 

2. Experimental 

2.1. Materials 

All chemicals were prepared from sigma–Aldrich and Merck companies. Many anal-

yses have been performed, including Fourier Transform Infrared Spectroscopy (FT-IR), 

which was recorded by Tensor27 for detecting functional groups of products, Thermal 

Gravimetric Analysis (TGA) under argon atmosphere was taken by STA 504, which dis-

played the thermal stability of nanocatalyst, Nuclear Magnetic Resonance (NMR) with 

Varian-Inova 500MHz, X-Ray Powder Diffraction (XRD) was performed by Dron-8, En-

ergy-Dispersive X-ray (EDX) Numerix DXP–X10P for indicating the existence of elements 

of synthesized nanocatalyst, and Field Emission Scanning Electron Microscopy (FE-SEM) 

with TESCAN-MIRA lll for displaying the morphology of synthesized nanocatalyst. 
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2.2. Preparation of Bulk C3N4 and g-C3N4 

Melamine is precursor for preparing bulk carbon nitride, which was heated to 550 °C 

temperature by the ramp of 2.5 °C.min−1 in a furnace for 4 h. Eventually, a yellow powder 

was formed. Then, for preparing g-C3N4, 1.0 g bulk C3N4 was stirred with 20mL H2SO4 at 

90 °C for 5 h. Afterward, the mixture was diluted with 200 mL ethanol and stirred at room 

temperature for 2 h. Then, the mixture was dispersed in 100 mL water/isopropanol (1:1), 

sonicated for 6 h, and centrifuged to obtain g-C3N4. 

2.3. Preparation of g-C3N4@L-arginine 

(1.0 g) g-C3N4 with (20.0 mL) dry toluene was dispersed. Then, (2.0 mL) 1,3-dibromo-

propane was poured into the final mixture and refluxed for 24 h under an N2 atmosphere. 

After filtration and washing with ethyl acetate, the product was dried at room tempera-

ture. The final product was dissolved in a mixture of water and methanol (1:1). Then, each 

of the following ingredients was added respectively, L-arginine (1mmol), K2CO3 (1.0 

mmol), and NaI (1.0 mmol)). Afterward, it was stirred for 24 h at room temperature, 

washed with water and methanol, then dried at 80 °C. 

2.4. Synthesizing Acridinedione Derivatives 

A mixture of dimedone (2mmol), ammonium acetate (1mmol), aromatic aldehyde 

(1mmol), ethanol (5mL), and catalyst (0.18 mol %) was poured into a flask and refluxed 

for the appropriate time. The reaction progress monitored by TLC. After completion the 

reaction, the mixture was cooled to room temperature, the catalyst was filtered, and by 

crystallization the intended product was obtained. 

2.5. Synthesizing Pyranopyrazole Derivatives 

A mixture of aldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), hydrazine hydrate 

(1.0 mmol), malononitrile (1.0mmol), catalyst (0.18 mol %), and ethanol (2.0 mL) was 

poured into a 25 mL round bottom flask and refluxed for the appropriate time. The reac-

tion progress monitored by TLC. After completion the reaction, the mixture was cooled 

to room temperature, the catalyst was filtered, and by crystallization the intended product 

was obtained. 

3. Results and Discussion 

FT-IR spectra of a) g-C3N4, b) modified g-C3N4, and c) g-C3N4@L-arginine are shown 

in Fig 1. In Fig 1a, there is a broad peak around 3000 − 3300 cm− 1 for N-H group stretching 

vibrations and is related to H- bonding or actually the existence of the OH group of water 

adsorption by g-C3N4 nanosheets. Fig 1(b) demonstrates the modified g-C3N4 nanosheets 

around 3000 − 2800 cm− 1 which is related to C-H stretching vibrations. In Fig1(c), stretch-

ing vibrations of C=O and C-O were shown at (1705 cm−1) and (1320 − 1210 cm−1) respec-

tively. A peak around 1602 cm− 1 indicates carbon double bond nitrogen and its stretching 

vibrations. 1303 and 1082 cm− 1 are related to the C-N bond stretching vibrations which are 

formed from triazine and N-H groups. The C-N stretching vibrations in the ring is signif-

icantly revealed at 1448 and 1379 cm− 1. 786 cm− 1 was shown because of tri-s-triazine vi-

brations. According to the mentioned peaks, g-C3N4@L-arginine was synthesized [3,4]. 
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Figure 1. FT-IR spectra of a) g-C3N4, b) modified g-C3N4, and c) g-C3N4@L-arginine. 

EDX analysis determined the presence of elements in a) g-C3N4 nanosheets, b) modi-

fied g-C3N4, and (c) g-C3N4@L-arginine. Nitrogen and Carbon elements in nanosheet g-

C3N4 are visible in Fig2(a). In Fig2(b), the existence of the Br element would confirm the 

modification of g-C3N4 nanosheets. Moreover, Fig2(c) revealed the presence of carbon, ni-

trogen, and oxygen, which confirm the synthesizing of g-C3N4@L-arginine. 
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Figure 2. EDX spectra of a) g-C3N4 nanosheets, b) modified g-C3N4, and (c) g-C3N4@L-arginine. 

The morphology of g-C3N4@L-arginine nanocatalyst was studied by FE-SEM analysis 

in two scales (200 nm and 1 𝜇m). C3N4’s graphitic and nanosheet properties are apparent 

based on Fig 3. It can be concluded that the g-C3N4@L-arginine nanocatalyst synthesizing 

has been successfully performed by observing the roughness of g-C3N4’s surface. 

 

Figure 3. FE-SEM images of g-C3N4@L-arginine. 

The XRD of g-C3N4 nanosheets and g-C3N4@L-arginine have been shown in Fig 4a-b. 

XRD pattern of nanosheet g-C3N4 in part (a) indicates the diffraction angles of 2θ = 15.96° 

and 2θ = 27.69°, which approve the synthesizing of g-C3N4 [34]. Diffraction angles of 2θ = 
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30.97°, 23.60°, 12.21°, 10.85°, 6.07° in XRD pasttern part (b) indicate the L-arginine on the 

surface of g-C3N4@L-arginine (JCPDS card no. 00–004-0180). 

 

 

Figure 4. XRD spectra of a) g-C3N4 nanosheets and b) g-C3N4@L-arginine. 

In Fig 5, g-C3N4@L-arginine thermal stability was shown at the range of 50 to 800 ℃. 

The weight ratio has decreased gradually from 100 to 200 °C because of the removal of 

absorbed water from g-C3N4@L-arginine. L-arginine’s separation was observed from 200 

to 400 °C. There is a dramatic decrease from 400 to 700 °C which is related to g-C3N4 

nanosheets decomposition. 

a) 

b) 
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Figure 5. TGA spectrum of g-C3N4@L-arginine. 

3.1. Application 

The catalytic activity of produced heterogeneous nanocatalyst g-C3N4@L-arginine 

was studied for multi-component reactions. The optimum reaction conditions for synthe-

sizing acridinedione and pyranopyrazole derivatives were evaluated. Synthesizing acri-

dinedione derivatives have been performed by using dimedone (2mmol), 4-chloro ben-

zaldehyde (1mmol), ammonium acetate (1mmol), ethanol (5mL), and catalyst (0.18 mol 

%) as model reaction1. In addition. pyranopyrazole derivatives were produced by malo-

nonitrile (1.0mmol), 4-chloro benzaldehyde (1.0 mmol), hydrazine hydrate (1.0 mmol), 

ethyl acetoacetate (1.0 mmol), ethanol (2.0 mL), and catalyst (0.18 mol %) as model reac-

tion 2. The possibility of aldol reaction in aliphatic aldehydes would be the significant 

reason for using aromatic aldehydes compared to aliphatic aldehydes. Moreover, the re-

action has been monitored by thin-layer chromatography (TLC). The model reactions 

have been investigated under different and convertible conditions. Initially, the reaction 

was performed with no catalyst at two different temperatures and the same reaction time 

(20 min). There was no acceptable efficiency as expected for both reactions (Table 1, entries 

1-2). After using the catalyst (Table 1, entries 3-4), the desired products were produced in 

very small quantities at two different temperatures with the same environmental solvent. 

By using the catalyst at 80 °C for 20 min, there was a significant yield and efficiency up to 

92% for the first reaction and 91% for the second one (Table 1, entry 5). Moreover, by 

increasing the reaction time up to 30 min, there are no noteworthy changes in the effi-

ciency (Table 1, entry 6). 

Also, changing the used solvent to water with the same condition as Table 1- entry 5 

can decrease the efficiency of reactions 1 and 2 to 65% and 68 %, respectively (Table 1, 

entry 7). If the solvent of the reactions changed to methanol and acetonitrile (Table 1, en-

tries 8 and 9), the reaction yield, in comparison with entry 5, will be increased and de-

creased, respectively. Likewise, the model reactions were performed by g-C3N4 (0.18 mol 

%) and L- arginine (0.18 mol %) with the same conditions, while the yield of the final 

products was decreased. 

After optimization, different aromatic aldehydes were used to show the merits of g-

C3N4@L-arginine catalytic activity and different pyranopyrazole and acridinedione deriv-

atives were synthesized (Table 2 and 3). 

Table 1. Optimization of g-C3N4@L-arginine for reaction 1 and 2. 
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Entry Catalyst 
Temprature 

(℃) 
Time (min) Solvent 

Yield (%) 

(Reaction 1) 

Yield (%) 

(Reaction 2) 

1 - 80 20 EtOH - - 

2 -  80 20 EtOH - - 

3 g-C3N4@L-arginine  RT 20 EtOH 12 14 

4 g-C3N4@L-arginine  40 20 EtOH 53 48 

5 g-C3N4@L-arginine  80 20 EtOH 92 91 

6 g-C3N4@L-arginine  80 30 EtOH 90 87 

7 g-C3N4@L-arginine  80 20 Water 65 68 

8 g-C3N4@L-arginine  80 20 MeOH 86 73 

9 g-C3N4@L-arginine  80 20 Acetonitrile 65 61 

10 g-C3N4 80 30 EtOH Trace Trace 

11 L-arginine 80 30 EtOH 32 30 

Table 2. Synthesis acridinedione derivatives by g-C3N4@L-arginine(a,b). 

 
Entry R Amine Product Mp (℃, [Ref]) Yield (%) 

1a 

 

NH4OAc 

 

280–282 [35] 88 

2a 

 

NH4OAc 

 

302–304 [36] 92 

3a 

 

NH4OAc 

 

244–245 [37] 80 
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4a 

 

NH4OAc 

 

291–293 [38] 83 

5a 

 

NH4OAc 

 

299–300 [39] 85 

6a 

 

NH4OAc 

 

283–285 [40] 79 

7a 

 

NH4OAc 

 

271–273 [41] 87 

8a 

 

NH4OAc 

 

 

330–333 [42] 78 

9a 

 

NH4OAc 

 

 

240–242 [43] 88 
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10a 

 

NH4OAc 

 

319–321 [35] 90 

(a) Reaction conditions: aromatic aldehyde (1mmol), dimedone (2mmol), ammonium ace-

tate(1mmol), catalyst (20 mg), and ethanol (5mL) refluxed in 80 ℃. (b) Yields referred to pure prod-

ucts. 

Table 3. Synthesis pyranopyrazole derivatives by g-C3N4@L-arginine(a,b). 

 
Entry R Product Mp (℃, [Ref]) Yield (%) 

 

1b 

 

 

 

 

244–245[44] 

 

87 

 

 

2b 

 

 

 

 

 

227–229[45] 

 

 
91 

 

 

3b 

 

 

 

 

 

185–187[46] 

 
 

78 

 

 

4b 

 

 

 

 

 

237–238[47] 

 

 

83 
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5b 

 

 

 

 

 

250–251[48] 

 

 
87 

 

6b 

 

 

 

 

 

225–227[49] 

 

 

76 

 

 

7b 

 

 

 

 

 

 

 

211–213[19] 

 

 

 

80 

 

 

 

8b 

 

 

 

 

 

 

 

208–210[49] 

 

 

 

77 

 

 

 

9b 

 

 

 

 

 

 

184–186[45] 

 

 

 

84 

 

 

 

10b 
 

 

 

 

 

197–198[50] 

 

 

 

89 

(a) Reaction conditions: aromatic aldehyde (1mmol), hydrazine hydrate (1mmol), ethyl acetoacetate 

(1mmol), malononitrile (1mmol) catalyst (20 mg), and ethanol (5mL) refluxed in 80 ℃. (b) Yields re-

ferred to pure products. 

3.2. Mechanism of Using Nanocatalyst for Synthesizing Pyranopyrazole and Acridinedione 

Derivatives 
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3.2.1. Pyranopyrazoles 

The study of the mechanism for pyranopyrazole derivatives and the proposed mech-

anism is shown in Scheme 2. Also, it needs g-C3N4@L-arginine for activating different in-

termediates and reactants. Malononitrile (I) and aromatic aldehyde (II) would react with 

each other by the carbon as a nucleophile. The carbon nucleophile reacts with the carbonyl 

group by releasing water, the intermediate (III) would produce. Simultaneously, ethyl 

acetoacetate (IV) and hydrazine hydrate (V) react with each other and form the interme-

diate (VI). Afterward, the amine group’s non-bonding electron pair reacts with the ethyl 

acetoacetate’s carbonyl group. In the following step, the 5-member ring was closed by 

removing the water molecule. In the last step, two produced intermediates, ((III) and (VI)), 

reacted with each, and the pryranopyrazole derivative has synthesized. 

3.2.2. Acridinediones 

The study of the mechanism for acridinedione derivatives synthesis and the pro-

posed mechanism is exhibited in Scheme 3. For activating the carbonyl group of aldehyde, 

the existence of g-C3N4 @L-arginine is essential. After activating the carbonyl group with 

nanocatalyst (I) and producing the hydroxyl group on dimedone (II), the carbon nucleo-

phile would react with activated aromatic aldehyde. Then the other dimedone reacts the 

double bond for donating electrons (III) and after a water molecule removal, the ring was 

closed by an intramolcular reaction (IV, V and VI). Eventually, the intended product has 

obtained (VII). 

 

 

Scheme 2. Proposed mechanism for synthesizing pyranopyrazole derivatives. 



Chem. Proc. 2022, 4, x FOR PEER REVIEW 14 of 4 
 

 

 

Scheme 3. Proposed mechanism for synthesizing acridinedione derivatives. 

3.3. Reusability 

The recovery and recyclability of the catalyst are the essential principles of green 

chemistry. So, g-C3N4@L-arginine’s reusability was studied for synthesizing pyranopyra-

zole and acridindione derivatives. G-C3N4@L-arginine was extracted from the reaction, 

washed with water and ethanol, then dried at 70 °C. It has been repeated five times in the 

same conditions. After each reaction, the yield decreased gradually, but it was acceptable 

(Fig 6). 

 

Figure 6. Reusability of g-C3N4@L-arginine in acridindione and pyranopyrazole derivatives. 

4. Conclusion 

In conclusion, in this project we utilized easy and convenient method for preparing 

g-C3N4@L-arginine nanocatalyst and applied for producing pyranopyrazole and acri-

dindione derivatives. G-C3N4@L-arginine nanocatlayst has remarkable advantages such 
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as reusability, easy separation, high efficiency, and short reaction time. According to the 

results, produced nanocatalyst is the superiority over other reported catalysts. 
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