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Abstract: In recent decades, heavy metal contamination in soils has caused global concern. Quanti-
tative apportionment of heavy metal sources in the surface soil is a complex task. This study indi-
cated a receptor model to evaluate the heavy metal concentrations of various sources for the soil 
and the related contamination impacts. In this study, the surface soil at the Cerrito Blanco in San 
Luis Potosi, Mexico was chosen as the case study location to reveal the potential pollution sources 
of heavy metals. The research suggested the combined use of the positive matrix factorization (PMF) 
model for the quantitative assessment of contamination sources as well as the spatial distribution 
techniques for the estimation of the pollution sources. This approach forms the basis for later soil 
contamination control and treatment. Throughout the study region, a total of thirty-nine samples of 
surface soil were collected. However, the mean concentration levels of Co, Cr, Cu, Ni, and Pb in the 
soils were lower than the permissible standards. It was observed that As and Cd were higher than 
their permissible standard values by around 5.43 and 1.19 times, respectively. The PMF findings 
demonstrate that the three main diverse sources of heavy metals in this study area's soils were nat-
ural, past mining activities and industrialisation, as well as groundwater. The concentrations of 
heavy metals in surface soils were considerably influenced by natural sources, which were generally 
the main contributing factor. The spatial distribution of soil contamination for heavy metals was 
also mapped using the Geographic Information System (GIS) technique. 

Keywords: heavy metal; source apportionment; PMF; soil contamination; GIS  
 

1. Introduction 
Heavy metal background levels in soils are mostly derived from parent rocks. Heavy 

metals accumulate in the soil through atmospheric deposition, sedimentation, sewage ir-
rigation, as well as other routes as a result of excessive industrial and agricultural activi-
ties [1,2]. However, there are several geological and anthropogenic sources of heavy metal 
contaminants, including air deposition, industrial discharges, fertiliser application, pesti-
cide usage, etc., that might contribute to their presence in the soil in urban-rural periph-
eral zones [3,4]. Therefore, it is essential to evaluate the heavy metal contamination along 
with necessary toxicological assessment.  

Source apportionment is critical for adequately controlling metal contaminant inputs 
and determining an acceptable criterion for soil remediation is facilitated by a thorough 
assessment of heavy metals background concentrations [5–7]. There is a common assump-
tion that the two main sources of heavy metals are natural processes and human activities 
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[8]. The geological parent material primarily controls the natural source apportionments 
of soil heavy metals [9]. Additionally, the anthropogenic sources of soil heavy metals in-
clude mining, agriculture, vehicle emissions, ore deposits, industrial emissions, coal burn-
ing, atmospheric deposition etc. [4,8,10]. To determine the source identifications and the 
spatial variations of heavy metals in soils, multivariate statistics are implemented in com-
bination with geostatistical techniques [11,12]. There are also many receptor models which 
are used to identify the sources of heavy metals. The most prominent and widely used 
receptor models are principal component analysis/absolute principal component scores 
(PCA/APCS), positive matrix factorization (PMF), and UNMIX [4,13,14]. In the early 
1990s, source identification of pollutants in the atmosphere was done using positive ma-
trix factorization (PMF) [15]. Additionally, in recent years, it has been used successfully to 
assign source contributions in sediments, soils, and aquatic systems [8,16]. Therefore, this 
study used the PMF model to determine the sources of seven heavy metals in the surface 
soils of Cerrito Blanco, Matehuala, Mexico.  

In this study, the source apportionment of arsenic (As), cadmium (Cd), cobalt (Co), 
chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) in the surface soil are evaluated 
using the PMF source identification receptor model. The specific objectives of this study 
are as follows:  

(i) to estimate the heavy metal concentrations in the surface soil around Cerrito 
Blanco, Matehuala, San Luis Potosi, Mexico,  

(ii) to identify the possible pollution sources of the heavy metals using PMF model,  
(iii) to analyse the spatial distribution patterns of source factors of heavy metals.  

2. Study Area 
The selected study area is located between 23°40′30′′N latitude and 100°35′27′′ W lon-

gitude around Joya Verde soccer sports club, a non-cultivated farming area of Cerrito 
Blanco, Matehuala municipality, San Luis Potosi, Mexico, with a total land area of approx. 
4.84 ha. (Figure 1). The soccer club is around fourteen years old, and it includes three 
soccer fields. It is surrounded by semi-arid vegetation and underdeveloped agricultural 
farmland [10,17]. The mean annual temperature in this area is 14° Celsius. The rainy sea-
son lasts from June to September, with a 300 mm average rainfall [17–19]. 

 
Figure 1. The study area map showing the distribution of soil sampling points. 
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3. Materials and Methods 
3.1. Soil Sampling and Chemical Analysis 

To evaluate the source apportionment of heavy metals in Cerrito Blanco, Matehuala 
area, 39 surface soil samples were collected using an auger at the depth of 0–5 cm from 
soccer fields and scrub areas around the fields. A proportion less than 2 mm was obtained 
by sieving the soil samples after they were air-dried at room temperature. According to a 
considerably modified version of ISO 11466:1995, surface soil samples were digested 
[20,21]. Next, 10 ml of aqua regia (HNO3:HCl, 3:1) was then added to a beaker containing 
1.0 gm of soil sample. The total accessible heavy metals in soils may be determined using 
this digestion process [17,22]. Inductively coupled plasma optical emission spectroscopy 
(ICP-OES) was used to determine the heavy metal concentrations in the surface soil 
[17,23]. For each sample site, a Garmin Etrex Personal navigator GPS was used to record 
the location's coordinates using the WGS-1984 coordinate system. 

3.2. Positive Matrix Factorization Model (PMF) Model 
PMF is a receptor model that the United States Environmental Protection Agency has 

recommended to analyse the different types of sources of environmental pollution 
[8,24,25]. This model was developed by Paatero and Tapper, (1994) [15]. A matrix of spe-
ciated sample data is divided by the PMF model into two matrices: factor profiles (𝑓) and 
factor contributions (𝑔) [26]. In this research, PMF 5.0 model was implemented to source 
identification of heavy metals in the surface soils.  

 

𝑥 =  𝑔𝑓 + 𝑒



ୀଵ

 

 
where 𝑥  is a quantitative matrix for the 𝑗th heavy metal component in 𝑖 samples; 

𝑔  denoted a contribution matrix of the 𝑘th source factor; for the 𝑘th source factor, 𝑓 
represents a source factor of the 𝑗th heavy metal component, and the residual value for 
the 𝑗th metal element over 𝑖 numbers of samples is denoted by the symbol 𝑒.  

 

𝑄 =   ቆ
𝑒

𝑢
ቇ

ଶ

ୀଵ



ୀଵ

 

 
where 𝑄  is the difference (i.e., 𝑒 ) between the 𝑥  and the output of 𝑔𝑓 , 

weighted by the uncertainty measurement 𝑢.   
Two input files are needed for the PMF model: soil sample concentration values and 

soil sample uncertainty values. The following equation was used to estimate the uncer-
tainty values: 

 
𝑢 = 5 6⁄ × 𝑀𝐷𝐿  (for 𝑐 ≤ 𝑀𝐷𝐿) 

𝑢 = ඥ(𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑐)ଶ + 𝑀𝐷𝐿ଶ (for 𝑐 > 𝑀𝐷𝐿) 
 
where 𝑐  is the concentration values of soil samples, 𝑀𝐷𝐿  is the species-specific 

method detection limit, and the error fraction represents the uncertainty measurement 
percentage. 

3.3. Data Processing and Analysis 
The descriptive statistical analysis of the soil samples was performed with SPSS Sta-

tistics version 28. ESRI’s ArcGIS software was used for spatial distribution mapping of 
source factors of heavy metals. The source identification of the heavy metals was quanti-
tatively determined using the EPA PMF 5.0 software. 

4. Results 
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4.1. Descriptive Statistics of Heavy Metals Concentrations in Soils 
Table 1 shows the comprehensive statistical results for seven heavy metals in the sur-

face soil of Cerrito Blanco. The average concentrations of all heavy metals increased in the 
following sequence: Co < Cd < Cr < Ni < Cu < Pb < As.  The concentrations of all heavy 
metals in the soil are lower than the permissible limit or metal reference values, except As 
and Cd. The concentration of As in the soil is about 5 times higher than the permissible 
limit, which means that the level of As contamination in this soil is very high. The permis-
sible limits of heavy metals in the surface soil were As (22 mg/kg) [17], Cd (0.80 mg/kg) 
[27], Co (40 mg/kg) [28], Cr (100 mg/kg) [27], Cu (36 mg/kg) [21], Ni (35 mg/kg) [27], and 
Pb (85 mg/kg) [21]. All the permissible limit values given in this study are taken as per the 
global standard values of different places published in previous studies. The reference 
values of heavy metals in the surface soils of Mexico were As (22 mg/kg), Cd (37 mg/kg), 
Co (not regulated), Cr (280 mg/kg), Cu (not regulated), Ni (1600 mg/kg), and Pb (400 
mg/kg) [29]. The coefficient of variation (CV) is classified as low (CV < 16), moderate (16 
< CV < 36), and high (CV > 36) [25,30]. The CV of As is 91.71, and the degree of variation 
is very high, which is more than other metals. However, there was greater variation and 
spatial dispersion in the soil of this study area for heavy metals. 

Table 1. Statistical summary of heavy metal concentrations in soils. 

Metals As Cd Co Cr Cu Ni Pb 
Mean  119.44 0.95 0.76 2.96 20.65 3.20 36.95 

Standard Error 17.54 0.10 0.10 0.37 1.56 0.30 3.97 
Median 90.51 0.94 0.69 2.49 18.10 3.07 30.86 

Standard Deviation 109.54 0.65 0.65 2.28 9.75 1.87 24.79 
Sample Variance 1,1998.65 0.42 0.43 5.21 95.04 3.49 614.63 

Kurtosis 8.37 −1.09 −0.74 4.85 3.63 0.93 5.73 
Skewness 2.43 0.21 0.53 2.11 1.68 0.93 2.12 

Range 578.17 2.18 2.19 10.82 47.85 8.13 126.30 
Minimum 13.14 0.00 0.00 0.28 7.88 0.24 8.99 
Maximum 591.31 2.18 2.19 11.10 55.73 8.37 135.29 

Sum 4658.01 37.12 29.73 115.30 805.17 124.90 1440.99 
Coefficient of varia-

tion (CV) (%) 
91.71 68.06 85.77 77.22 47.22 58.32 67.10 

Count 39 39 39 39 39 39 39 
Confidence Level 

(95.0%) 
35.51 0.21 0.21 0.74 3.16 0.61 8.04 

4.2. Source Apportionment of Heavy Metals by PMF 
The PMF model was performed to better understand the sources of heavy metals in 

the soil along the Cerrito Blanco, Matehuala and to evaluate their apportionment to each 
of the heavy metals (Figure 2). The model was running 20 times with the factors set to 3, 
4, and 5. The Q value was the lowest, and the majority of the residual fell between −3 and 
3 [24] for the 3-factor analysis. The contributions of heavy metals in factor 1 increased in 
the following order: As < Cr < Cu < Ni < Pb < Cd < Co (Figure 3). The Cr, Ni, and Cd 
concentrations, which account for 50.76%, 32.44%, and 38.75% of factor 2, respectively, are 
the major contributions, with limited impact from other metal sources. Factor 3 was dom-
inated by As (94.02%), Cu (34.74%), and Cd (23.46%) (Figure 3). 
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Figure 2. Source profiles and source contributions of heavy metals in the soil from PMF. 

Factor 1 showed a significant positive load of Co, Cd, Ni, Pb, Cu, and Cr in the source 
contributions and were close or below to the permissible limit standards derived from the 
surface soil. Therefore, the results were revealing that factor 1 is a significant lithogenic 
source. The concept of ionic reaction may be able to explicate the clustering characteristic 
resulting from PMF, since the concentration values and correlations of heavy metals may 
fluctuate across various parent materials. According to the spatial distribution mapping 
of factor 1, the study area's western side which is surrounded by semi-arid vegetation 
contains the majority of the high-value locations (Figure 4). This result was in line with 
the concentration-distribution patterns of Co, Cd, Cu, and Ni where significant concen-
trations of these heavy metals were found close to each other. The average concentrations 
of Co, Cd, Cu, Ni, and Pb were close to their respective permissible limits; hence they 
could be of natural origin. Therefore, factor 1 might be classified as a natural source. 

 
Figure 3. Factors fingerprint of each heavy metal contributing to the different pollution sources. 

Factor 2 was associated with Cr, Ni, and Cd (Figure 3). According to the results, these 
three metals contributed to this source factor more significantly than the other four metals. 
Previous research revealed that non-ferrous metal smelting, smelter slags, mining, geo-
chemical exploration, and other industrial operations were the sources of the heavy metal 
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contamination found in Mexican soils [10,31,32]. The major sources of Cd have been iden-
tified as of metallurgical origin [8]. Industrial emissions are the only source of Cr and Ni. 
The spatial distribution of factor 2 shows that the middle portion of the study area of the 
soccer field has the majority of the high-value locations (Figure 4). As a result, it is possible 
to confirm that factor 2 represents the mining and industrial sources.  

Figure 3. had significant contributions of As, Cu, and Pb than the other three sources. 
The As is mostly associated with irrigation water and is observed in a considerable area 
of soccer fields and the surrounding study area. Studies conducted earlier revealed that 
the water in the study area had incredibly high quantities of heavy metals, which are 
caused by the dissolution of metallurgical waste from an abandoned smelter upstream of 
Matehuala [17–19]. Unfortunately, this contaminated water is the main water source for 
local agriculture [17,20]. Inorganic As, Cu, and Pb chemicals such as sodium arsenate, lead 
arsenate, calcium arsenate, cattle dung, animal waste, and fertilisers were utilised as herb-
icides or pesticides in the surrounding farmland, which probably has an impact on the 
groundwater. The spatial distribution pattern of factor 3 revealed that the soccer field area 
with high local concentrations is mostly affected by irrigation (Figure 4). Therefore, it 
might be concluded that factor 3 reflected the groundwater sources. 

  

(a) (b) 

 
                            (c) 

Figure 4. Spatial distribution of PMF source factors in the surface soil: (a) Factor 1; (b) Factor 2; (c) 
Factor 3. 

5. Conclusions 
This study measured the contamination risks by descriptive statistical analysis ap-

proach, identification of various sources of heavy metals in the surface soil using the PMF 
model, and observed the spatial distribution patterns of source factors based on an IDW 
interpolation technique. This study concluded that the mean concentrations of Co, Cr, Cu, 
Ni, and Pb in the surface soils in Cerrito Blanco were lower than their permissible limits. 
But the mean concentrations of As and Cd were higher than their permissible limits. The 
PMF results showed that the identification of source contribution for heavy metals in the 
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surface soil was as follows: 53% for natural sources, 23% for mining activities and indus-
trialization sources, and 24% for irrigational groundwater sources. However, the spatial 
distribution patterns of source factors and model outcomes revealed that Co, Cd, Cu, Ni, 
and Pb originated from natural sources; Cr, Cd, and Ni may be obtained from past mining 
and industrialization; and As and Cu mainly came from groundwater sources. The results 
of this study are relevant to the growing concern for the human risk of As exposure from 
the surface soil in recreational and agricultural areas. 
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