Lab of Natural and Designed Intelligence

"A neural circuit model of the striatum resolves the conflict between context and dominance apparent in the prefrontal cortex."

Silvia Vilariño and Salva Ardid

Rule-based decisions of non-dominant features are not resolved in the prefrontal cortex (PFC)

Task

Buschman et al., Neuron (2012)

Observations

Color Rule Trials

* Significant differences

The bias might be mediated by short-term synaptic depression acting within the striatum

- Trigger: Emerging alpha activity in the PFC after the cue onset in the population encoding the dominant feature (Buschman et al., Neuron 2012)

- Cortical inputs target the principal neurons of the striatum, both of the direct (D1 SPNs) and the indirect (D2 SPNs) pathway
- Short-term synaptic depression acts on D1 and D2 SPNs

Testing the hypothesis in a computational model

Neural circuit model derived from Ardid et al., PNAS (2O19):

Striatal connectivity

- Two modules according to feature selectivity: Orientation (dominant) and Color (non-dominant)
- Stronger inhibition between than within feature-selective populations

Spontaneous activity and response to cortical inputs

Trials resolution: indirect pathway (D1 SPNs)

A) Orientation trial

$F R_{\mathrm{D} 1-\mathrm{O}}=25 \mathrm{sp} / \mathrm{s}, \mathrm{FR}_{\mathrm{D} 1-\mathrm{C}}=25 \mathrm{sp} / \mathrm{s}$

B) Color trial

$F R_{D 1-O}=24 \mathrm{sp} / \mathrm{s}, F R_{D 1-\mathrm{C}}=26 \mathrm{sp} / \mathrm{s}$

Trials resolution: indirect pathway (D2 SPNs)

Conclusions

- PFC drives the bias for the dominant feature when it is relevant (orientation trial)
- However, PFC activity does not resolve acting upon the non-dominant feature (color trial)
- Hypothesis: a bias could be present in the striatum mediated by short-term synaptic depression
- Trigger: alpha activity appears in the dominant PFC population (orientation) previous to the stimulus presence
- Assumption: long-range inhibition between populations is stronger than short-range inhibition within populations
- The model shows a bias in the direct pathway following the context: higher instantaneous firing rate amplitude in the orientation trial and higher average firing rate in the color trial
- Next steps:
- Currently analyzing the properties of a single read-out for the two types of biases
- In a follow-up study, we are testing the hypothesis that the pattern of long- vs. short-range inhibition is shaped during feature-selectivity learning

