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Abstract: The paleontological analysis of the fauna of ammonites collected in the marl-limestone 
series of the Pliensbachian and The Toarcian of the Es-Saffeh Mountains (Tiaret, western Algeria) 
brings new data to the Oceanic Anoxic Event of the lower Toarcian (T-OAE). During this time in-
terval, hypoxia is characterized by a significant disturbance of the global carbon cycle marked by a 
negatve excursion of the isotope δ13C, δ18O and a increase in organic carbon content (TOC). Benthic 
life almost completely disappears and microfauna (foraminifera) is absent, it should however be 
pointed out that the few specimens of small size (swarf forms) collected in the marly levels  and 
well identified (ammonites), attributed to the microshell forms; can be interpreted as a response to 
the conditions of the reducing environment during the Lower Toarcian, particularly at the end of 
the Polymorphum Zone and the beginning of the Levisoni Zone. 
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1. Introduction 
The Early Toarcian Oceanic Anoxic Event (T-OAE) is recognized as one of the most 

important environmental perturbations during the Mesozoic, with a dramatic impact on 
marine biota revealed by a significant mass extinction event (MEE) in benthic and pelagic 
groups ([1–9]). It has been recognized for many principal groups of fossil organisms: os-
tracods, foraminifers, bivalves, brachiopods and ammonoids ( [3,4,7,10–21]).  

The sedimentary record of the T-OAE is characterized by organic-rich sediments 
“black shales” associated with a distinctive negative excursion in the δ 13C recorded in 
organic matter, biomarkers, marine carbonates, and fossil wood from marine and conti-
nental sections (e.g., [6,8,22–34]).  

Several environmental changes may have been involved in the mass extinction event, 
mainly affecting benthic organisms, such as generalized anoxia, the enhancement of 
greenhouse conditions and a warming trend, or the incidence of sea-level changes (e.g., 
[2,35–49,51).  

The aim of this research is to analyse the ammonite’s assemblages of the 
Pliensbachian–Toarcian limit of the Benia section (Northwestern Algeria). The study of 
the ammonite’s assemblages made it possible to analyze the morphological response of 
adopted ammonites to palaeoenvironmental changes. 
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2. Location and Geological Setting 
The study region is located at the Es Seffah Mountain (Figure 1), part of the Nador 

Mountains; it is located approximately 45 km SE of Tiaret city. The Nador Mountains are 
part of the pre-Atlas domain which is bordered to the north by the external zone of the 
Tellian Domain, to the South–East by the Atlas Domain, to the south by the Oran High 
Plains and to the west by the Tlemcenian Domain.  

The Nador Chain is organized into three topographic units arranged from North to 
South as follows:  

- The Nador Zérange: It corresponds to an anticline with a liasic core spilled to-
wards the North West; the southern flank is clearly less disturbed and shows 
good development of the Jurassic series [52];  

- The Faîdja Valley: It is occupied by marls from the Upper Jurassic (Oxfordian). 
These deposits are sometimes covered by Miocene and Plio-Quaternary sedi-
ments. 

- The Taga Plateau: It occupies the southern flank of the anticlinal structure of 
Nador. It corresponds to the dolomitico-limestone formations of the Upper Ju-
rassic which show a slight dip and a great extension towards the South. 

The ammonites studied in this work come from the Benia section, which is located 
on the southern flank of the Es Saffeh Mountain (Figure 1). The studied outcrop was 
raised near the old "Lime kiln" which is located 2 km North Western of the village of 
Bénia. 

3. Materials and Methods 
New bed- by bed sampling in the Benia section located on the southern flank of the 

Es Seffah Mountain has been exhaustively carried out to achieve a high-resolution record, 
resulting 112 newly collected ammonites. Mean biometric parameters (length, width, 
thickness) were measured for complete specimens. Ammonites associations allow to pre-
cisely characterise the upper Pliensbachian and lower Toarcian biozones.   

4. Lithostratigraphic Framework 
The section described in this work has already b een the subject of several strati-

graphic studies which have made it possible to subdivide the formation of the “Benia 
Marno-limestone” into several terms (a–f), ([52–55]). In this work we will retain the last 
subdivision of established by Sebane [56], which can be summarized in two lithological 
units (Figure 1): 

4.1. Lithological Unit I: (Sublithographic Marly Limestones)  
It is a close alternation of marl and limestone grouping together the "a  & b" terms 

of Caratini (1970). The limestone beds are thick, more or less clayey, sometimes compact 
or crumbling. In the upper part, the limestone banks are better defined and their upper 
surfaces are highlighted by accumulations of ammonites, belemnites, and trace fossils of 
benthic organisms. The marly levels are greenish gray in color, are not very thin and con-
tain abundant microfauna ( foraminifera, ostacods).  

The ammonites collected by Elmi et al, (1974) & Sebane, (1984) within this limit con-
stitute two groups (Figure 2):  

 The first includes Arieticeras gr. Amaltheus (Oppel), Emaciaticeras type E. Villae (Gemm) 
and Amaltheus margaritatus (Month). This association indicates an average 
Pliensbachian age; 
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Figure 1. Geological setting and stratigraphical succession studied: (A) Situation and geological map 
of Nador mountains; (B) Satellite image of the locality studied; (C) Synthetic lower Jurassic 
lithostratigraphical column from Benia section; (D) Outcrop view of Benia section showing the dis-
tribution of the ammonites chronozones. 
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 The second contains Canavaria (Canavaria) sp., Emaciaticeras sp., Canavaria (Canavaria) 
gr., Zancliana (Fuc). This association indicates the Upper Pliensbachian (Emaciatum 
Zone). 
The lithological nature of the sediments (marl and limestones), as well as the abun-

dance of cephalopods and radiolarians indiate an open marine enironment. 

4.2. Lithological Unit II (Marly Beds with Lumpy Levels) 
It groups together the terms (c & d) of Caratini (1970); The term c corresponds to a 

greenish marl base revealing small gray-greenish limestone levels which pass towards the 
top to small discontinuous and lumpy banks; The term d corresponds to clayey "ammo-
nitico-rosso". It begins with nodular to lumpy levels, greenish in color, becoming reddish 
at the top. The limestone levels are separated by lumpy reddish levels.  

The ammonites collected in this unit make it possible to distinguish two successive 
intervals (Figure 2):  

 The first contains Dactylioceras sp., Dactyloceras delicatum (Bean-Simp), Dactyloceras 
tuberculatum (Guex), rare Hildaites gyralis (Buck) and Hildaites sp. This fauna indicates 
the lower Toarcian (Polymorphum Zone);  

 The second interval yielded Hildaites cf., subserpentinus (Buck), Hildaiites cf. borialis 
(Seeback) and rare Harpoceratoiides sp. This association indicates the lower Toarcian 
(Levisoni Zone). In its top part, we note the appearance of the first Hildoceras gr. 
lusitanicum (Merst.) indicating a middle Toarcian age (Bifron Zone). 
The analysis of lithofacies and microfacies makes it possible to define two types of 

environment: First, a deep environment, inhabited by small brachiopods (dwarf forms. 
The sedimentation shows significantly high levels of illite and pyrite. The conbination of 
this characters indicates a narrow basin, having the shape of a deep gutter, poorly oxy-
genated on the bottom, where we note the presence of a certain degree of confinement 
([56–58]). Then a relatively deep environment where a clayey sedimentation rich in lumpy 
facies (Ammonitico-rosso facies) settles. The microfauna reappears. These characters in-
dicate a resumption of life due to the change of conditions which become more favorable. 
The transition between the first environment and the second is marked by the absence of 
benthic life (azoic episode) [56]. 

5. Results 
The systematic study identified and described fourteen (14) genera of ammonites be-

longing to six subfamilies: Dactylioceratinae, Hildoceratinae, Harpoceratinae, Mercaticer-
atinae, Calliphylloceratinae and Lytoceratinae.  

The faunas studied are identical to those known in Western Europe and occupy the 
same stratigraphic positions, their The vertical extension shows two important horizon-
tals: The first, at the base of horizon XIII, corresponds to the extinction of the Hildocer-
atinae and the appearance of Hammatoceratidae and Grammoceratinae; ; the second, at 
the base of horizon XXII, marks the disappearance of Grammoceratinae and the emer-
gence of Dumortiinae.  
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Figure 2. Stratigraphic distribution of ammonites from the Benia section. 

The Dactylioceratidae, Harpoceratidae and Arieticeratidae collected in the Es-Saffeh 
Mountains section made it possible to recognize all the passage terms from the Emaciatum 
Zone to the end of the Polymorphum Zone. The Levisoni Zone is recongnize by the pres-
ence of Hildoceratidae [52].  

It should however be pointed out that the few specimens of small size (swarf forms) 
collected in the marly levels and well identified (ammonites), attributed to the microshell 
forms (Figure 3). 
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Figure 3. The ammonites collected: (a) Harpoceras falciferum SOWERBY; (b) Maconieras vigoense 
BUCKMAN; (c&f) Hildoceras lusitanicum MEISTER; (d) Hildoceras sp; (e) Hildoceras sublevisoni 
FUCINI; (g) Mercaticeras sp; (h) Dactylioceras sp; (i) Peronoceras fibulatum SOWERBY; (j) Cataco-
eloceras sp; (k) Callyphyloceras sp; (l) Partshiceras sp, Scale: 1cm. 

6. Discussion  
In the Nador Mountains during this time interval, hypoxia, favorable to the accumu-

lation and preservation of organic matter, is characterized by a significant disturbance of 
the global carbon cycle marked by a negatve excursion of the isotope δ13C, δ18O and a 
increase in organic carbon content (TOC). 

Benthic life almost completely disappears, and microfauna (foraminifera) is absent 
([56], [59]). Although the existence of a sexual dimorphism of the Dactylioceratidae is of-
ten discussed by certain authors ([60], [18]), it should however be pointed out that the few 
specimens of small size (swarf forms) collected in the marly levels  and well identified 
(ammonites), attributed to the microshell forms; can be interpreted as a response to the 
conditions of the reducing environment during the Lower Toarcian, particularly at the 
end of the Polymorphum Zone and the beginning of the Levisoni Zone. 

7. Conclusion 
The paleontological analysis of the fauna of ammonites collected in the marl-lime-

stone series of the Pliensbachian and The Toarcian of the Es-Saffeh Mountains (Nador 
Mountais, western Algeria) brings new data to the Oceanic Anoxic Event of the lower 
Toarcian (T-OAE) well known over a significant  part of the North West Europe and 
West  Tethys shelves and basins [50].  

The Dactylioceratidae, Harpoceratidae and Arieticeratidae collected in the Es-Saffeh 
Mountains section made it possible to recognize all the passage terms from the Emaciatum 
Zone to the end of the Polymorphum Zone. The Levisoni Zone is recongnize by the 
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presence of Hildoceratidae [52]. During this time interval, hypoxia, favorable to the accu-
mulation and preservation of organic matter, is characterized by a significant disturbance 
of the global carbon cycle marked by a negatve excursion of the isotope δ13C, δ18O and a 
increase in organic carbon content (TOC). Benthic life almost completely disappears, and 
microfauna (foraminifera) is absent ([56], [59]). It should however be pointed out that the 
few specimens of small size (swarf forms) collected in the marly levels  and well identi-
fied (ammonites), attributed to the microshell forms; can be interpreted as a response to 
the conditions of the reducing environment during the Lower Toarcian, particularly at the 
end of the Polymorphum Zone and the beginning of the Levisoni Zone.  

These levels are correlated to those described in the Northwest Tethyan basins where 
this global anoxic event (Oceanic Anoxic Event:OAE) is recordes [50]. During this period, 
the environmental conditions are also related to the Liasic tectonic event (eustatism) 
which palyed a key role in the paleogeographic evolution in North Africa and Europe. 
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