
MOL2NET, 2022, 7, ISSN: 2624-5078 1

https://mol2net-07.sciforum.net/

MOL2NET'21, Conference on

Molecular, Biomedical & Computational

Sciences and Engineering, 7th ed.

A rule-based arc-flow formulation for a generalized bin packing

problem

Luis A. Gutierrez-Rodriguez a, Rogelio Jesús Corrales-Díaz a

a Graduate Program in Systems Engineering, Nuevo Leon State University (UANL), Monterrey, Av. Universidad s/n, Col. Ciudad

Universitaria, 66455 San Nicolas de los Garza, Nuevo Leon, Mexico.

luisgr_93@hotmail.com

Abstract

In the Generalized Bin Packing Problem (GBPP) different size containers can store objects and there is a cost per

using the container. Each object is characterized by its volume and a benefit for being packed. The objects are

subdivided into two groups, mandatory and non-mandatory. Mandatory items must be packed regardless their perk,

while non-mandatory objects are optional to pack. In GBPP the smallest number of containers must be used, while non-

mandatory items must be packed to increase the overall utility.

The arc-flow is an effective pseudo-polynomial formulation for Cutting and Packing problems. Here an edge represents

each object, and the size of the object depends on the distance between the departure node and the arrival node. The

resulting graph represents all possible combinations of objects and the way they can be located within a container.

In this work, we generate a rule-based digraph that introduces the loss arcs representing the empty space in the

containers.

Keywords

Bin Packing, Generalized Bin Packing, Exact methods, Arc-flow formulation, Loss arcs, Rule-based Digraph.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 2

https://mol2net-07.sciforum.net/

1. Introduction

The Generalized Bin Packing Problem (GBPP) was introduced in [Baldi et al., 2012], as a variant of

the Bin Packing Problem (BPP). In these problems each container has a capacity to store objects and a

cost per use. Each object is characterized by a volume it occupies in the containers and benefit for

being packed. The objects are subdivided into two groups: mandatory and non-mandatory. The

mandatory objects must be packed regardless of their perk. The non-mandatory objects are optional to

pack into containers. The objective in GBPP is minimizing the number of containers used, and the

non-mandatory objects are packed to get a higher benefit and increase utility. The objective of the

GBPP is closely related to two classic operations research problems, the Bin Packing Problem

(packing objects in containers) and the Knapsack Problem (select to pack the most profitable objects).

Arc-Flow model is an effective pseudo-polynomial formulation for BPP. It was proposed in [Valerio

De Carvalho, 1999], where a branch-and-price algorithm was used. In this formulation each object is

represented by an edge, the size of the object depends on the distance that separates the departure and

the arrival node. The resulting digraph represents all possible combinations of objects and the way they

can be sorted into a container. In [Valerio de Carvalho, 2002] it was proposed a generalization of this

model by allowing different container sizes on the same graph. Based on these works [Brandao and

Pedroso, 2016] proposed a more efficient compression of the graph and is known as the General Arc-

Flow Model (GAFM).

In this paper we propose another graph generation procedure similar to that used in [Valerio de

Carvalho, 2002] but with rules to build a graph without symmetry add complement arcs called “loss

arcs” to facilitate optimal solution for problem instances with many objects.

2. Materials and Methods

In this section we propose a variant of [Valerio de Carvalho, 2002] algorithm to build the asymmetric

reduced graph. First the Arc-Flow Model is introduced and compared with similar known models, then

the rules to build the digraph are considered.

2.1 The Arc-Flow Formulation

In the Arc-Flow formulation, we consider the vertices in the graph to represent the integer capacity of

the container, from zero to maximum capacity. For example, if we have a container with a capacity of

7, we have 8 vertices {0, 1, …,7}. An arc (i, j) represents an object having size (j – i).

Let T be a set of containers with index t used to indicate container’s type. It is assumed that containers

are arranged according to their capacity in the decreasing order. Let K be a set of all objects to pack

and Ok be a subset of K with the non-mandatory objects characterized by index k. Let Ct be a capacity

of the container of type t. Let wk be a volume of the object kth type, pk a profit of packing kth type

objects. Let bk be the demand, the number of objects to be packed, of mandatory objects of type k.

Denote by Ax a set of arcs which represent objects and let Ay be a set of loss arcs representing an empty

space in the container. Finally, let G = (V, Ax∪ Ay) be a digraph associated with GBPP.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 3

https://mol2net-07.sciforum.net/

2.1.1 Decision variables

𝐳𝐭 = number of containers of type 𝒕

𝒙𝒅𝒆 = number of arcs with size 𝒆 − 𝒅 representing objects

𝒚𝒅𝒆 = number of arcs with size 𝒆 − 𝒅 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑒𝑚𝑝𝑡𝑦 𝑠𝑝𝑎𝑐𝑒

𝒆𝒊 = {
𝟏, if non-mandatory object 𝒊 ∈ 𝑶𝒌 𝑖𝑠 𝑝𝑎𝑐𝑘𝑒𝑑

𝟎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.1.2 Arc-Flow Model with Loss Arcs

min

k

t t k i

t T k K i O

c z p e
  

−  (1.1)

subject to

() () () (), , , ,

,

, 0

0, 0

t

t

x y x y

t

de de ef ef

t Td e A d e A e f A e f A

z e C

x y x y z e

e

   


=


+ − − = − =


 

    
 (1.2)

(),

x

k

de k i

i Od e A

x b e k K


= +    (1.3)

 t tz U t T   (1.4)

()

,

,

 t
t

y
t

v C

v C A

y z Tt


   (1.5)

  0,1 i ke i O   (1.6)

 (,)de
xx d e A+   (1.7)

 (,)de
yy d e A+   (1.8)

The objective (1.1) represents the utility defined as the difference between the cost of using the

containers and the benefit of packing the non-mandatory objects. Constraints (1.2) state the flow

conservation. The demand is defined as the sum of the demand for obligatory objects and the sum of

the demand of the non-mandatory objects as stated in (1.3), In contrast to GAFM, where the demand

for the objects is integer, in our model a decision is made for each object and corresponding binary

variables are used. Constraints (1.4) state that for each type of containers, the solution is bounded by

the number of available containers. The constraint (1.5) assures that the number of empty edges

reaching a terminal vertex cannot exceed the number of edges that reach the terminal vertex. This

helps maintaining the flow conservation for the arcs of empty spaces.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 4

https://mol2net-07.sciforum.net/

2.2 The Rule-Based Digraph

The digraph is constructed under the following assumptions:
1. The number of vertices is equal to the capacity of the largest container

2. A list of unique sizes of the objects is known.

3. For all objects, mandatory and non-mandatory, a demand for the objects is known.

Based on this information the following algorithm is proposed. More details on algorithms for graph

construction are given in [Gutierrez-Rodriguez, 2019].

Algorithm 1: Build of digraph for GBPP

Input: m → the demand of the objects per size; l → list of unique size of the objects;

 C → list of unique capacities of the containers

Output: V→ set of Vertices; A → set of Arcs

1 Function buildDigraphGBPP (m, l, C): is

2 L ← max {ci: i ∈ C};

3 V ← {0, …, L};

4 A ← ∅;

5 Ax ← ∅;

6 Ay ← ∅;
7 For t in l do:

8 | Ax ← Ax ∪ {(0, t)};

9 Foreach u in V do:

10 | T ← ∅;

11 | mla ← 0; #mla means Max Length Arc

12 | Foreach (i, j) in A do:

13 | | If u = j and j-i > mla then mla ← j-i;

14 | For k = 1 to m do:

15 | | If lk ≤ mla then: T ← T ∪ {(u + lk)};

16 | Foreach v in T do:

17 | | If v ≤ L then: Ax ← Ax ∪ {(u, v)};

18 | Foreach c in C do:

19 | | Ay ← Ay ∪ {(u, c)};

20 A ← Ax ∪ Ay;

21 Return G = (V, A); #Digraph without symmetry

Table 1. Algorithm to build the asymmetric digraph for GBPP.

2.2.1 Graph example

To show the graphs that we build the following example are used. Consider a set of containers of size

4 and 7. In which we can only pack objects of size 6, 3 and 2. In Figure 1 we show the build of digraph

based in Valerio de Carvalho’s method.

Figure 1. A build foreach types of containers

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 5

https://mol2net-07.sciforum.net/

In the Figure 2 we compress and insert each lower capacity container on the larger container. We

consider the nodes 4 and 7 nodes as final nodes for a Maximum flow problem. All solutions with z2 are

the quantity of containers with z2 sized was occupied. Similarity, for each zn where zn+1 is a lower

capacity container than zn.

Figure 2. A digraph equivalent of two graphs in Figure 1

In Figure 3 we add the loss arcs, which represent the empty spaces in the container. The loss arc can

arrive only to n node if these nodes are terminal nodes, which it means, is a specific capacity of some

container.

Figure 3. A digraph for GBPP with loss arcs

2.3 Methodology

In this paper, we compare the GAFM of [Brandao and Pedroso, 2016] vs the rule-based arc-flow

model proposed in this paper. In both cases, the instances generated by [Baldi et al., 2012] were used

for comparison. The set of instances available for GBPP is segmented into 4 classes.

Class 0: There are 300 instances that were originally created for the Variable Cost Sized Bin Packing

Problem (VCSBPP) [Crainic et al., 2011], there are 10 instances for each possible combination of the

following 4 parameters:

• Number of objects: 25, 50, 100, 200 and 500.

• Volume of objects: I1:[1, 100]; I2:[20, 100]; I3:[50, 100]

• Profit of objects: 200 for everyone, all mandatory.

• Container type:

o 3 types: 100, 120 and 150

o 5 types: 60, 80, 100, 120 and 150

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 6

https://mol2net-07.sciforum.net/

The cost per use is equal to the capacity of the container. For each type of container there is a lower

bound and an upper bound, the lower bounds are 0 and the bounds are given ⌈VTOT /Vt⌉ where VTOT is

the total volume of the objects, and Vt is the capacity of the type t container.

Class 1: These are the same instances as Class 0, but all objects are not mandatory, and the benefits of

packaging the objects is given a distribution uniform (0.5,3)i ip w  

Class 2: These are the same instances as Class 0, but all objects are Non-mandatory, and the benefits

of packaging the objects is given a distribution uniform (0.5,4)i ip w  

Class 3: These are a selection of 12 large instances (500 objects) of class 1 and class 2, with a

representative mix of characteristics in terms of volume of items, item perks, item gains, and container

types. For each instance, five instances were randomly obtained with 0%, 25%, 50%, 75% and 100%

required items, for a total of 60 instances.

3 Results and Discussion

In this section we compare the results obtained by the rule-based arc-flow formulation for the

generalized bin packing problem (MILP1) vs the results obtained with GAFM (MILP2)

3.1 Experimental environment

For the rule-based arc-flow formulation the experiment was carried out on an HP Z230 Workstation,

which has an Intel Xeon CPU E3-1245 v3 @ 3.40GHz x 8 processor and 15.4 GiB RAM, the used

version of CPLEX was 12.9.0. In CPLEX processing was limited to one thread, the time limit for the

execution of solvers was 300 seconds. For the results obtained in [Brandao, 2017] use a computer with

an Intel Xeon 2.66GHz Quad-Core processor was used. Mac OS X 10.11.6 operating system, with

16GB of RAM. The algorithm to generate the graph was developed in C++, the models were built in

Python 2.7, and it was solved in Gurobi 7.0.2

3.2 Results

In Table 2, the Time column indicates the resolution time; The Nodes column indicates the number of

nodes explored by the CPlex branch-and-bound in MILP1 and Gurobi in MILP2; The Constraints

column indicates the number of average constraints in each model; The Variables column indicates the

number of average variables in each model; The Optimal column indicates the number of instances in

which optimal results were obtained.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 7

https://mol2net-07.sciforum.net/

Table 2. Compare results between MILP1 and MILP2 on Class 0,1 and 2.

Table 3. Compare results between MILP1 and MILP2 on Class 3.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 8

https://mol2net-07.sciforum.net/

Table 3 has the same columns as Table 2, and it contains shows the comparison of the models on the

instances of Class 3. We can note that in instances where the percentage of mandatory objects is 0%,

25% and 100% the processing times of MILP1 are less than those of MILP2, although in general

MILP2 takes less on average. Another point to note is that on average the MILP1 model has fewer

variables than the MILP2.

3.3 Discussion

The main difference between Valerio de Carvalho’s model and our model is considering a set of loss

arcs to represent empty spaces in containers. Valerio de Carvalho’s model also has the loss, but when

reducing the graph, the loss arcs are removed. In the practice we consider “imaginary” objects and

spaces that would be occupied by some objects of this size. That is the reason for having the demand

constraint always greater than the real demand value. The objective in BPP is to pack all items in

containers but, in GBPP the demand can be estimated exactly since you can depreciate some objects

which is not profitable to pack. If we add a set of loss arcs, we add to the solver the capability of

selecting an empty space before an object where the profit is lower than no pack it.

Although the models were not run on the same computer, both models manage to find many optimal

values for instances of literature, within a reasonable time. However, it is noted that the method of

compression of MILP2 allows a significant reduction in the number of variables and restrictions

resulting in less processing time. The MILP1 model behaved almost as efficiently as the best model in

literature.

Note is that the MILP1 model finds solutions optimal in 500 object instances long before MILP2, needs

to be reviewed the structure of the models, to confirm this peculiar situation. a possible explanation is

that MILP2 in its compression algorithm discards paths in the for which there is not enough demand for

small objects, for which reason these objects are sought for compatibility with other larger ones. In

MILP1 the edges of empty space to make these paths feasible and preserve the flow with these edges

zero weight. Another possible explanation would be that being a large quantity of objects, these small

objects in a group are enough to fill a container for them themselves, without having to look for

compatibility and without having to belong to a path that could be discarded by the GAFM

compression algorithms.

4. Conclusions

The rule-based arc-flow is a pseudo-polynomial formulation and is one of the best at solving the

variants of the BPP of one dimension and the VCSBPP. We developed a method based on the network

flow model for VCSBPP and check that it has good results also for the GBPP variant presenting results

almost as good as the best-known network flow-based model, the GAFM, proposed by [Brandao,

2017].

An interesting direction for the future work is generating the GAFM vs the model proposed in this

work by comparing it with most of the largest instances with 1000, 2000 and 5000 objects and adding

to compare different types and sizes of containers.

https://mol2net-07.sciforum.net/

MOL2NET, 2022, 7, ISSN: 2624-5078 9

https://mol2net-07.sciforum.net/

References

[Baldi et al., 2012] Baldi, M. M., Crainic, T. G., Perboli, G. & Tadei, R. (2012). The generalized bin

packing problem. Transportation Research Part E: Logistics and Transportation Review,

48(6), 1205-1220. https://doi.org/10.1016/j.tre.2012.06.005

[Brandao and Pedroso, 2016] Brandão, F. & Pedroso, J. P. (2016). Bin packing and related

problems: General arc-flow formulation with graph compression. Computers & Operations

Research, 69, 56-67. https://doi.org/10.1016/j.cor.2015.11.009

[Brandao, 2017] Brandao, F. D. A. (2017). Cutting & packing problems: general arc-flow formulation

with graph compression. (Doctoral thesis, Universidade do Porto). https://repositorio-

aberto.up.pt/handle/10216/110172

[Crainic et al., 2011] Crainic, T. G., Perboli, G., Rei, W. & Tadei, R. (2011). Efficient lower bounds

and heuristics for the variable cost and size bin packing problem. Computers & Operations

Research, 38(11), 1474-1482. https://doi.org/10.1016/j.cor.2011.01.001

[Gutierrez-Rodriguez, 2019] Gutiérrez-Rodríguez, L. Á. (2019). Problema generalizado del

empaquetamiento de contenedores: una comparación entre diferentes métodos de solución

(Master's thesis, Universidad Autónoma de Nuevo León). http://eprints.uanl.mx/id/eprint/17851

[Valerio De Carvalho, 1999] Valério de Carvalho, J. (1999). Exact solution of bin‐packing problems

using column generation and branch‐and‐bound. Annals of Operations Research, 86, 629-659.

https://doi.org/10.1023/a:1018952112615

[Valerio de Carvalho, 2002] Valério de Carvalho, J. (2002). LP models for bin packing and cutting

stock problems. European Journal of Operational Research, 141(2), 253-273.

https://doi.org/10.1016/s0377-2217(02)00124-8

https://mol2net-07.sciforum.net/
https://doi.org/10.1016/j.tre.2012.06.005
https://doi.org/10.1016/j.cor.2015.11.009
https://repositorio-aberto.up.pt/handle/10216/110172
https://repositorio-aberto.up.pt/handle/10216/110172
https://doi.org/10.1016/j.cor.2011.01.001
http://eprints.uanl.mx/id/eprint/17851
https://doi.org/10.1023/a:1018952112615
https://doi.org/10.1016/s0377-2217(02)00124-8

