
MOL2NET, 2022, 7, ISSN: 2624-5078                                                                                     1 

https://mol2net-07.sciforum.net/          

 

 

 

MOL2NET'21, Conference on 

Molecular, Biomedical & Computational 

Sciences and Engineering, 7th ed. 
 

 
 

A rule-based arc-flow formulation for a generalized bin packing 

problem 
 

Luis A. Gutierrez-Rodriguez a, Rogelio Jesús Corrales-Díaz a 

 
a Graduate Program in Systems Engineering, Nuevo Leon State University (UANL), Monterrey, Av. Universidad s/n, Col. Ciudad 

Universitaria, 66455 San Nicolas de los Garza, Nuevo Leon, Mexico. 

luisgr_93@hotmail.com  

 

Abstract   

In the Generalized Bin Packing Problem (GBPP) different size containers can store objects and there is a cost per 

using the container. Each object is characterized by its volume and a benefit for being packed. The objects are 

subdivided into two groups, mandatory and non-mandatory. Mandatory items must be packed regardless their perk, 

while non-mandatory objects are optional to pack. In GBPP the smallest number of containers must be used, while non-

mandatory items must be packed to increase the overall utility. 

The arc-flow is an effective pseudo-polynomial formulation for Cutting and Packing problems. Here an edge represents 

each object, and the size of the object depends on the distance between the departure node and the arrival node. The 

resulting graph represents all possible combinations of objects and the way they can be located within a container. 

In this work, we generate a rule-based digraph that introduces the loss arcs representing the empty space in the 

containers. 
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1. Introduction  

The Generalized Bin Packing Problem (GBPP) was introduced in [Baldi et al., 2012], as a variant of 

the Bin Packing Problem (BPP). In these problems each container has a capacity to store objects and a 

cost per use. Each object is characterized by a volume it occupies in the containers and benefit for 

being packed. The objects are subdivided into two groups: mandatory and non-mandatory. The 

mandatory objects must be packed regardless of their perk. The non-mandatory objects are optional to 

pack into containers. The objective in GBPP is minimizing the number of containers used, and the 

non-mandatory objects are packed to get a higher benefit and increase utility. The objective of the 

GBPP is closely related to two classic operations research problems, the Bin Packing Problem 

(packing objects in containers) and the Knapsack Problem (select to pack the most profitable objects). 

 

Arc-Flow model is an effective pseudo-polynomial formulation for BPP. It was proposed in [Valerio 

De Carvalho, 1999], where a branch-and-price algorithm was used. In this formulation each object is 

represented by an edge, the size of the object depends on the distance that separates the departure and 

the arrival node. The resulting digraph represents all possible combinations of objects and the way they 

can be sorted into a container. In [Valerio de Carvalho, 2002] it was proposed a generalization of this 

model by allowing different container sizes on the same graph. Based on these works [Brandao and 

Pedroso, 2016] proposed a more efficient compression of the graph and is known as the General Arc-

Flow Model (GAFM). 

 

In this paper we propose another graph generation procedure similar to that used in [Valerio de 

Carvalho, 2002] but with rules to build a graph without symmetry add complement arcs called “loss 

arcs” to facilitate optimal solution for problem instances with many objects. 

 

2. Materials and Methods 

In this section we propose a variant of [Valerio de Carvalho, 2002] algorithm to build the asymmetric 

reduced graph. First the Arc-Flow Model is introduced and compared with similar known models, then 

the rules to build the digraph are considered. 

 

2.1 The Arc-Flow Formulation 

In the Arc-Flow formulation, we consider the vertices in the graph to represent the integer capacity of 

the container, from zero to maximum capacity. For example, if we have a container with a capacity of 

7, we have 8 vertices {0, 1, …,7}. An arc (i, j) represents an object having size (j – i). 

 

Let T be a set of containers with index t used to indicate container’s type. It is assumed that containers 

are arranged according to their capacity in the decreasing order. Let K be a set of all objects to pack 

and Ok be a subset of K with the non-mandatory objects characterized by index k. Let Ct be a capacity 

of the container of type t. Let wk be a volume of the object kth type, pk a profit of packing kth type 

objects. Let bk be the demand, the number of objects to be packed, of mandatory objects of type k. 

Denote by Ax a set of arcs which represent objects and let Ay be a set of loss arcs representing an empty 

space in the container. Finally, let G = (V, Ax∪ Ay) be a digraph associated with GBPP. 
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2.1.1 Decision variables 

 

𝐳𝐭 =  number of containers of type 𝒕 

𝒙𝒅𝒆 = number of arcs with size 𝒆 − 𝒅 representing objects 

𝒚𝒅𝒆 = number of arcs with size 𝒆 − 𝒅 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑒𝑚𝑝𝑡𝑦 𝑠𝑝𝑎𝑐𝑒 

𝒆𝒊 = {
𝟏,          if non-mandatory object 𝒊 ∈ 𝑶𝒌 𝑖𝑠 𝑝𝑎𝑐𝑘𝑒𝑑

𝟎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

2.1.2 Arc-Flow Model with Loss Arcs 
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The objective (1.1) represents the utility defined as the difference between the cost of using the 

containers and the benefit of packing the non-mandatory objects. Constraints (1.2) state the flow 

conservation. The demand is defined as the sum of the demand for obligatory objects and the sum of 

the demand of the non-mandatory objects as stated in (1.3), In contrast to GAFM, where the demand 

for the objects is integer, in our model a decision is made for each object and corresponding binary 

variables are used. Constraints (1.4) state that for each type of containers, the solution is bounded by 

the number of available containers. The constraint (1.5) assures that the number of empty edges 

reaching a terminal vertex cannot exceed the number of edges that reach the terminal vertex. This 

helps maintaining the flow conservation for the arcs of empty spaces. 
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2.2 The Rule-Based Digraph  

The digraph is constructed under the following assumptions: 
1. The number of vertices is equal to the capacity of the largest container 

2. A list of unique sizes of the objects is known. 

3. For all objects, mandatory and non-mandatory, a demand for the objects is known. 

Based on this information the following algorithm is proposed. More details on algorithms for graph 

construction are given in [Gutierrez-Rodriguez, 2019].  

Algorithm 1: Build of digraph for GBPP 

Input: m → the demand of the objects per size; l → list of unique size of the objects;  

            C → list of unique capacities of the containers 

Output: V→ set of Vertices; A → set of Arcs 

1 Function buildDigraphGBPP (m, l, C): is 

2 L ← max {ci: i ∈ C}; 

3 V ← {0, …, L}; 

4 A ← ∅; 

5 Ax ← ∅; 

6 Ay ← ∅; 
7 For t in l do: 

8  |      Ax ← Ax ∪ {(0, t)}; 

9 Foreach u in V do:  

10  |      T ← ∅; 

11  |      mla ← 0;                                                             #mla means Max Length Arc 

12  |      Foreach (i, j) in A do: 

13  |       |       If u = j and j-i > mla then mla ← j-i; 

14  |      For k = 1 to m do: 

15  |       |       If lk ≤ mla then: T ← T ∪ {(u + lk)}; 

16  |      Foreach v in T do: 

17  |       |       If v ≤ L then: Ax ← Ax ∪ {(u, v)}; 

18  |      Foreach c in C do: 

19  |       |       Ay ← Ay ∪ {(u, c)}; 

20  A ← Ax ∪ Ay; 

21 Return G = (V, A);                                                          #Digraph without symmetry 

Table 1. Algorithm to build the asymmetric digraph for GBPP. 

 

2.2.1 Graph example 

To show the graphs that we build the following example are used. Consider a set of containers of size 

4 and 7. In which we can only pack objects of size 6, 3 and 2. In Figure 1 we show the build of digraph 

based in Valerio de Carvalho’s method. 

 

Figure 1. A build foreach types of containers 
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In the Figure 2 we compress and insert each lower capacity container on the larger container. We 

consider the nodes 4 and 7 nodes as final nodes for a Maximum flow problem. All solutions with z2 are 

the quantity of containers with z2 sized was occupied. Similarity, for each zn where zn+1 is a lower 

capacity container than zn. 

 

 

Figure 2. A digraph equivalent of two graphs in Figure 1 

 

 

In Figure 3 we add the loss arcs, which represent the empty spaces in the container. The loss arc can 

arrive only to n node if these nodes are terminal nodes, which it means, is a specific capacity of some 

container. 

 

 

Figure 3. A digraph for GBPP with loss arcs 

 

2.3 Methodology 

In this paper, we compare the GAFM of [Brandao and Pedroso, 2016] vs the rule-based arc-flow 

model proposed in this paper. In both cases, the instances generated by [Baldi et al., 2012] were used 

for comparison. The set of instances available for GBPP is segmented into 4 classes. 

 

Class 0: There are 300 instances that were originally created for the Variable Cost Sized Bin Packing 

Problem (VCSBPP) [Crainic et al., 2011], there are 10 instances for each possible combination of the 

following 4 parameters: 

• Number of objects: 25, 50, 100, 200 and 500. 

• Volume of objects: I1:[1, 100]; I2:[20, 100]; I3:[50, 100] 

• Profit of objects: 200 for everyone, all mandatory. 

• Container type: 

o 3 types: 100, 120 and 150 

o 5 types: 60, 80, 100, 120 and 150 
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The cost per use is equal to the capacity of the container. For each type of container there is a lower 

bound and an upper bound, the lower bounds are 0 and the bounds are given ⌈VTOT /Vt⌉ where VTOT is 

the total volume of the objects, and Vt is the capacity of the type t container. 

 

Class 1: These are the same instances as Class 0, but all objects are not mandatory, and the benefits of 

packaging the objects is given a distribution uniform (0.5,3)i ip w    

 

Class 2: These are the same instances as Class 0, but all objects are Non-mandatory, and the benefits 

of packaging the objects is given a distribution uniform (0.5,4)i ip w    

 

Class 3: These are a selection of 12 large instances (500 objects) of class 1 and class 2, with a 

representative mix of characteristics in terms of volume of items, item perks, item gains, and container 

types. For each instance, five instances were randomly obtained with 0%, 25%, 50%, 75% and 100% 

required items, for a total of 60 instances. 

 

3 Results and Discussion  

In this section we compare the results obtained by the rule-based arc-flow formulation for the 

generalized bin packing problem (MILP1) vs the results obtained with GAFM (MILP2) 

 

3.1 Experimental environment  

For the rule-based arc-flow formulation the experiment was carried out on an HP Z230 Workstation, 

which has an Intel Xeon CPU E3-1245 v3 @ 3.40GHz x 8 processor and 15.4 GiB RAM, the used 

version of CPLEX was 12.9.0. In CPLEX processing was limited to one thread, the time limit for the 

execution of solvers was 300 seconds. For the results obtained in [Brandao, 2017] use a computer with 

an Intel Xeon 2.66GHz Quad-Core processor was used. Mac OS X 10.11.6 operating system, with 

16GB of RAM. The algorithm to generate the graph was developed in C++, the models were built in 

Python 2.7, and it was solved in Gurobi 7.0.2 

 

3.2 Results  

In Table 2, the Time column indicates the resolution time; The Nodes column indicates the number of 

nodes explored by the CPlex branch-and-bound in MILP1 and Gurobi in MILP2; The Constraints 

column indicates the number of average constraints in each model; The Variables column indicates the 

number of average variables in each model; The Optimal column indicates the number of instances in 

which optimal results were obtained. 
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Table 2. Compare results between MILP1 and MILP2 on Class 0,1 and 2. 

 

 

Table 3. Compare results between MILP1 and MILP2 on Class 3. 
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Table 3 has the same columns as Table 2, and it contains shows the comparison of the models on the 

instances of Class 3. We can note that in instances where the percentage of mandatory objects is 0%, 

25% and 100% the processing times of MILP1 are less than those of MILP2, although in general 

MILP2 takes less on average. Another point to note is that on average the MILP1 model has fewer 

variables than the MILP2.  

 

3.3 Discussion  

The main difference between Valerio de Carvalho’s model and our model is considering a set of loss 

arcs to represent empty spaces in containers. Valerio de Carvalho’s model also has the loss, but when 

reducing the graph, the loss arcs are removed. In the practice we consider “imaginary” objects and 

spaces that would be occupied by some objects of this size. That is the reason for having the demand 

constraint always greater than the real demand value. The objective in BPP is to pack all items in 

containers but, in GBPP the demand can be estimated exactly since you can depreciate some objects 

which is not profitable to pack. If we add a set of loss arcs, we add to the solver the capability of 

selecting an empty space before an object where the profit is lower than no pack it. 

 

Although the models were not run on the same computer, both models manage to find many optimal 

values for instances of literature, within a reasonable time. However, it is noted that the method of 

compression of MILP2 allows a significant reduction in the number of variables and restrictions 

resulting in less processing time. The MILP1 model behaved almost as efficiently as the best model in 

literature. 

 

Note is that the MILP1 model finds solutions optimal in 500 object instances long before MILP2, needs 

to be reviewed the structure of the models, to confirm this peculiar situation. a possible explanation is 

that MILP2 in its compression algorithm discards paths in the for which there is not enough demand for 

small objects, for which reason these objects are sought for compatibility with other larger ones. In 

MILP1 the edges of empty space to make these paths feasible and preserve the flow with these edges 

zero weight. Another possible explanation would be that being a large quantity of objects, these small 

objects in a group are enough to fill a container for them themselves, without having to look for 

compatibility and without having to belong to a path that could be discarded by the GAFM 

compression algorithms.  

 

4. Conclusions  

The rule-based arc-flow is a pseudo-polynomial formulation and is one of the best at solving the 

variants of the BPP of one dimension and the VCSBPP. We developed a method based on the network 

flow model for VCSBPP and check that it has good results also for the GBPP variant presenting results 

almost as good as the best-known network flow-based model, the GAFM, proposed by [Brandao, 

2017]. 

 

An interesting direction for the future work is generating the GAFM vs the model proposed in this 

work by comparing it with most of the largest instances with 1000, 2000 and 5000 objects and adding 

to compare different types and sizes of containers. 
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