

1

23

24

32

ploring the effect of PAK inhibition in a 3D Pancreatic Cancer invasion model †	2
rianne Best ¹ , Dr Debashis Sarker ² and Professor Claire M. Wells ^{2,*}	3
 School of Cancer and Pharmaceutical Sciences, King's College London; marianne.best@kcl.ac.uk School of Cancer and Pharmaceutical Sciences, King's College London; claire.wells@kcl.ac.uk Correspondence: marianne.best@kcl.ac.uk Presented at the Cells 2023. 	4 5 6 7 8
Abstract: Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive cancer, with over half of	9
patients presenting with metastatic PDAC at diagnosis. Most patients receive conventional chemo-	10
therapy which invariably faces resistance, and a key facilitator in this is the PDAC stroma which	11
acts as a functional mediator of disease progression through bilateral crosstalk between stromal cells	12
and cancer cells. 'Migrastatics' are a new drug class which target cell migration pathway effector	13
proteins to attenuate cancer cell invasion. Improvement in PDAC treatment strategy is well-overdue	14
and migrastatics as adjuvant therapy is one avenue gaining traction. The p21-activated kinase (PAK)	15
family is frequently overexpressed and/or amplified in PDAC where it regulates cytoskeletal actin	16
contractility as well as transcription. Pre-clinical PAK inhibitors have shown reduced 3D PDAC cell	17
invasion in vitro, yet it is unknown how the PDAC stroma would respond to a PAK inhibitor and	18
	19
inhibition.	20
Keywords: Pancreatic cancer, cell migration, cell invasion, p21-activated kinases (PAKs), kinase in- hibitors, actomyosin contractility, cytoskeletal remodelling, transcription, migrastatics, 3D models	21 22

1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive and rapidly invasive cancer, 25 with only 10% of patients surviving 5 years post-diagnosis¹. Chemotherapy treatment invariably faces resistance, and a central facilitator of this is the PDAC stroma which acts as 27 a functional mediator of disease progression through bilateral crosstalk between PDAC 28 cells and stromal cells¹. The p21-activated kinases (PAK1-6) regulate cytoskeletal actin 29 dynamics as well as cellular transcription, and are frequently overexpressed and/or amplified in PDAC to promote cancer cell migration². 31

Cancer Research UK is developing PAK inhibitors as anti-migration cancer therapeutics 33 called 'migrastatics'. Thus far, pre-clinical PAK inhibitors have shown promising results 34 by attenuating 3D invasion of PDAC cells *in vitro*³, yet the stromal response to PAK inhibition remains unknown. Pancreatic stellate cells (PSCs) are a key stromal player in PDAC 36 and it has been shown that drug administration can alter PSC behaviour to ultimately 37 drive the overall therapeutic outcome^{4,5}. Therefore, my PhD project investigates the PSC 38 response to PAK inhibition, with regards to 3D PDAC invasion. 39

Citation: Best, M.; Sarker, D.; Wells, C. M. Exploring the effect of PAK-inhibition in a 3D Pancreatic Cancer Invasion Model. *Biol. Life Sci. Forum* 2022,

Academic Editor: Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1

2

11

12

18

25

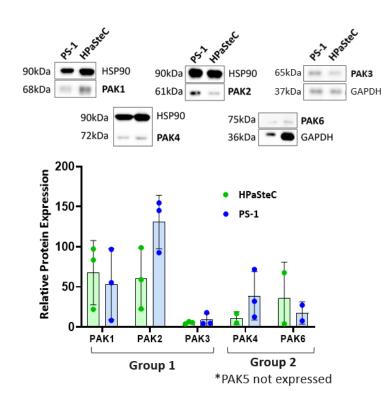
31

2. Methods

A 3D spheroid assay is used to co-culture PDAC cells and PSCs together to model stellate 3 promotion of PDAC invasion, and subsequently investigate the effect of a PAK inhibitor. 4 Immunofluorescence, western blotting, and gel contraction assays are used to characterise 5 PSC behaviour and explore PAK expression. Further, multi-photon imaging investigates 6 PSC influence on alignment and/or degradation of the extracellular matrix (ECM) within 7 the 3D spheroid system. Finally, a novel pipeline was developed to isolate PDAC cells and 8 PSCs from 3D co-culture spheroids for downstream RNA-sequencing. All sequencing 9 analysis is performed using R. 10

3. Results

Characterisation studies compared our in-house immortalised stellate cell model, PS-113against the commercially available HPaSteC, validating that the latter was the more repre-14sentative model to bring forward. Exploration of PSC PAK expression revealed that HPaS-15teC express PAKs in both mRNA and protein, with Group I PAKs (PAK1-3) appearing16more highly expressed over Group II PAKs (PAK4-6) (Fig. 1).17


Both HPaSteC conditioned media, as well as co-culturing of HPaSteC with PDAC cells19significantly increase 3D PDAC cell invasion. However, the physical presence of co-cul-20tured HPaSteCs is required for maximal PDAC invasion efficiency in the spheroid (Fig. 2).21Treatment with the pan-PAK inhibitor was tested in the 3D PDAC:Stellate co-culture set-22ting against group specific PAK inhibitors to show that both pan-PAK and Group I PAK23reduce PDAC invasion more so than Group II (Fig. 3).24

To investigate the effect of direct PAK inhibition on the stellate cell cytoskeleton, morphological characterisation was performed to show that PAK inhibition induces HPaSteC cell rounding. Currently multi-photon imaging is exploring PAK inhibition influence on HPaSteC-driven fibre realignment compared to MMP secretion – both published mechanisms by which PSCs promote PDAC invasion. 30

In addition to cytoskeletal dynamics, PAKs have strong links to transcriptional regulation. 32 We developed a pipeline to isolate both PDAC and PSCs from embedded 3D invaded 33 spheroids for downstream ultra-low bulk RNA-sequencing in order to evaluate the transcriptomic landscape of both PDAC and PSC compartments under PAK inhibition. So far, 35 quality control shows good quality RNA was obtained and differential gene expression 36 will be explored next. 37

38

- 39
- 40

Figure 1. p21-activated kinase (PAK) expression in Pancreatic Stellate cells (PSCs). Western blots of PAK protein expression (top) and quantification (bottom) of HPaSteC and PS-1.

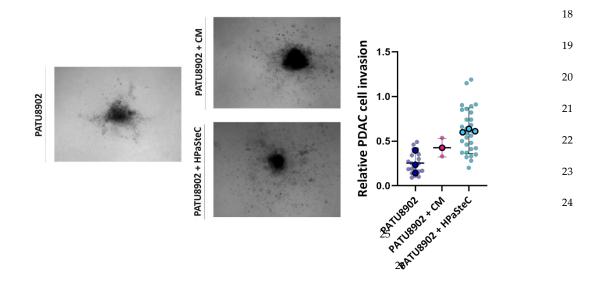


Figure 2. The presence of Pancreatic Stellate cells (PSCs) are required for maximal invasion efficiency27in the 3D spheroid compared to conditioned PSC media. PDAC cell line, PATU8902 is shown cultured28alone (left), compared to with HPaSteC conditioned media (middle top) and with HPaSteC co-cultured29(middle bottom). Quantification of PDAC cell specific invasion relative to number of PDAC cells seeded is30shown (right).31

32

13

16

17

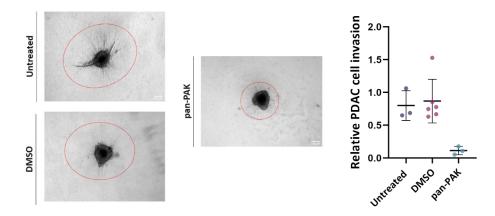


Figure 3. Treatment with a pan-PAK inhibitor which targets all 6 PAK isoforms shows reduced8invasion in the 3D PDAC: Stellate co-culture spheroid assay compared to control groups Untreated9and DMSO (vehicle control).10

4. Conclusions

These data suggest that PAKs functionally contribute to PSC promotion of PDAC invasion,13strengthening the argument for PAK inhibitors as PDAC migrastatics. Current work is14further investigating the potential divergence between the two PAK groups, as well as how15PAK inhibition could affect PSC interaction with ECM to facilitate PDAC invasion. RNA-16sequencing analysis is underway to explore the differentially expressed genes in PAK-in-17hibited PDAC and stellate cells, to understand how PAK inhibition may influence the bi-18lateral crosstalk between these two cell types.19

Funding: This research was funded by Cancer Research UK, grant number XXX

References

1.	Biffi G, Oni TE, Spielman B, et al. Il1-induced Jak/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in	24
	pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9(2):282-301. doi:10.1158/2159-8290.CD-18-0710	25
2.	King H, Nicholas NS, Wells CM. Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol. 2014;309:347-387.	26
	doi:10.1016/B978-0-12-800255-1.00007-7	27
3.	King H, Thillai K, Whale A, et al. PAK4 interacts with p85 alpha: Implications for pancreatic cancer cell migration. Sci Rep.	28
	2017 ;7:1-12. doi:10.1038/srep42575	29
4.	Cukierman E. The Few yet Fab p4 ulous Pancreatic Stellate Cells Give Rise to Protumoral CAFs . Cancer Discov.	30
	2022 ;12(2):296-298. doi:10.1158/2159-8290.cd-21-1501	31
5.	Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancre-	32
	atic cancer. J Exp Med. 2017 ;214(3):579-596. doi:10.1084/jem.20162024	33

11

12

20

21

22

23

34