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Abstract: We review some recent soliton solutions in a class of four-dimensional supergravity the-

ories. The latter can be obtained from black hole solutions by means of a double Wick rotation. For 

special values of the parameters, the new configurations can be embedded in the gauged maximal 

N = 8 theory and uplifted in the higher-dimensional D = 11 theory. We also consider BPS soliton 

solutions, preserving a certain fraction of supersymmetry. 
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1. Introduction 

Solitons play a special role in classical physics as well as in quantum and string the-

ory, determining a richer structure of the full non-perturbative regime. This different class 

of exact solutions can be obtained from a double Wick rotation of a former black hole 

configuration [1,2], the new solutions characterizing a regular spacetime configuration 

devoid of horizons. 

In non-supersymmetric AdS gravity, solitons play a fundamental role as they can be 

treated as ground states for suitable field theories [2]. The negative mass of the AdS soliton 

has a natural interpretation as the Casimir energy of gauge theory living on the conformal 

boundary. In a non-susy version of the AdS/CFT conjecture, this would indicate that the 

soliton is the lowest energy solution with the chosen boundary conditions, leading to a 

different kind of positive energy conjecture [3]. 

BPS gravitational solitons preserving a certain fraction of supersymmetry can be also 

found, providing a privileged framework in studying the system evolution: the resulting 

dynamical equations are in fact typically first-order, as compared to the standard second 

order equations of motion. 

In the following, we are going to review soliton solutions in AdS4 with two Wilson 

lines, their phase structure and supersymmetric limits [4]. In particular, we will work in 

a dilaton truncation of a gauged N = 8 supergravity with vanishing axions, in the presence 

of non-trivial Fayet-Iliopoulos terms. 

2. The Model 

Let us consider the dilatonic sector of the STU model of the maximal SO(8)-gauged, 

N = 8 supergravity. When all the dilatons take the same value and after suitable identifi-

cation of the vector fields, we obtain the well-known T3 model with action 
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This T3 model can be obtained from the general class of N = 2 theories, labeled by a 

parameter ν, that are studied in [5], by setting ν = −2. 

Hairy Soliton Solutions 

Soliton solutions in the above model are obtained by means of a double Wick rotation 

t → iφ, φ → it, QΛ → iQΛ 

of the planar black hole of [5] for ν = −2, and explicitly read [4] 

e0 = √Υ dt, e1 = √Υ/f η dx, e2 = √Υf dφ, e2 = √Υf dz, 

ϕ = √
3

2
 log x , A1 = Q1(x−2 − x0

−2)dφ, A2 = Q2(x2 − x0
2)dφ, 

Υ(x) =
4L2x

(x2 − x0
2)2 η2

, f(x) = 1 +
η2(x2 − 1)3(3Q1

2 − x2Q2
2)

6L2x2
 . 

The conformal boundary is located at x = 1, so that the above metric represents two 

different spacetimes, one for x ∈ (0, 1), and the other for x in the range x ∈ (1, ∞), the 

solutions being physically distinguished by the sign of the dilaton field. 

Soliton solutions are characterized by a φ-circle contracting in the interior of the ge-

ometry, at some position x0 where f(x0) = 0. Regularity of the metric at x0 also requires 

φ ∈ [0, Δ], with 

Δ−1 = |
1

4πη

df

dx
|

x=x0

 

while the solutions have magnetic fluxes at infinity given by 

ΦM
1 = ∮ A1 = Q1Δ(1 − x0

−2),  ΦM
2 = ∮ A2 = Q2Δ(1 − x0

2). 

3. Results 

In the following, we will briefly analyze BPS configurations and the phase structure 

of our solutions. 

3.1. Supersymmetry 

From an explicit calculation of the fermionic variations (Killing spinor equations), 

one can see that the solution preserves part of the supersymmetry when [4,5] 

Q1 = −
Q2

√3
 , 

and, in this case, the metric function simplifies in 

f(x) = 1 −
(x2 − 1)4

x2
 
η2Q2

2

6L2
 . 

As one finds 4 chiral spinors in an N = 2 theory, the soliton solution turns out to be 

1/2 BPS in N = 2, while it is 1/8 BPS with respect to the N = 8 theory. 

3.2. Phase Structure 

Fixed Charge Boundary Condition 

From the boundary point of view, it is natural to parameterize the solutions in terms 

of the boundary data we hold fixed. In particular, we can consider fixed charges, holding 

fixed the ratios Q1/η, Q2/η and the period ∆. 
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Let us then consider the free energy of the solution in the fixed charge framework, 

where we also define 

q1,2 =
Δ2

4π2L
 
Q1,2

η
 . 

The free energy of the hairy solution in this framework reads [4] 
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where the minus (plus) is for the solutions with x < 1 (x > 1) and where V = βΔΔz, β 

being the inverse temperature and Δz = ∫ dz . 

We find supersymmetric configurations when q2 = −√3q2. On the other hand, the 

Einstein-Maxwell solutions of [6], with ϕ = 0 and a single vector with charge Q, also sat-

isfy the same boundary conditions, their parameters being related to ours by 

q1 =
Δ2

4π2L
 

Q

√8 L2
 . 

In the pure Einstein-Maxwell solution, the free energy reads [6] 

FEM

ΔΔz

=
2π3L2

Δ3κ
ξ2(5 − 4ξ), 

with q1
2 = 2−7ξ3(4 − 3ξ). Using now the expression of free energy of the AdS soliton G0 =

−
32

27

π3L2

Δ3κ
ΔΔz [2] as a convenient normalization, we find for the supersymmetric hairy so-

lution [4] 

Fϕ

|G0|
=

27

√2
|q1|. 

We show in Figure 1 the ratio 
F

|G0|
 as a function of q1 for q1 = −√3q1. We can see 

that there exists a branch of non-susy Einstein-Maxwell solutions with lower free energy 

than the supersymmetric hairy solution. This seems surprising, as we would expect the 

susy solutions to saturate a BPS bound, forbidding the existence of solutions with lower 

energy. 

 

Figure 1. The rescaled free energy F/|G0| | as a function of q1 on the supersymmetric shell 

q
1

= −√3q
1
. The yellow line represents the hairy supersymmetric solitons, while the non-super-

symmetric pure Einstein-Maxwell solitons are shown in blue [4]. 
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The above result, however, is not in contradiction with the positive energy theorem 

[7,8], which implies that the energy of a supersymmetry-preserving solution is lower than 

the energy of any other solution satisfying the same boundary conditions. In this regard, 

a necessary condition for the positive energy theorem to apply is the existence, for the 

non-susy solution, of an asymptotic Killing spinor which coincides, up to O(1/r2) terms 

at radial infinity, with the Killing spinor of the susy one. Since the latter has antiperiodic 

boundary conditions at infinity, in order for the positive energy theorem to apply, the 

non-susy solutions should admit an asymptotic Killing spinor with the same properties at 

the boundary: this is the case if the charges at infinity have specific values, for which the 

energy of the non-supersymmetric solution exceeds that of the supersymmetric one. Then, 

there is no contradiction with the positive energy theorem if we include among the bound-

ary conditions those applying to the asymptotic Killing spinors [4]. 
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