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Abstract: We investigate the background dynamics of a class of model with noncanonical scalar
field and matter both in FLRW closed and open spacetime. The detailed dynamical system analysis
is carried out in bouncing scenario. Cosmological solutions satisfying the stability and bouncing
conditions are obtained using the tools of dynamical system.
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1. Introduction

The shortcomings of the standard model of cosmology address in inflation as well
as bouncing scenario. The recent years have shown grand success for the inflationary
paradigm supported by precision data. Though inflation solves most of the problems
(horizon, flatness and entropy) of the standard model of cosmology, the issue with the
initial singularity is not resolved under its domain. It is the alternate scenario, nonsingular
bouncing model, that eradicates the singularity by constructing a universe which begins
with a contracting phase and then bounces back to an expanding phase through a non zero
minimum in the scale factor. Nonsingular bouncing models can be categorized into two
types, matter bounce model [1] and Ekpyrotik models [2,3]. For a review on these models
refer to [4–8]. Here let us not undermine the fact that the occurrence of singularity is an
artifact of pushing the classical theory of gravity, General Relativity to the limit, the Planck
region, where it no longer holds. We understand that in a true theory of quantum gravity
the singularity would be mitigated because of the uncertainty principle. At the same time
we emphasize that all the candidate theories of quantum gravity till date are tentative
in nature as the complete theory of quantum gravity has not been discovered yet and
hence the physics of Planck region is still unknown. It is in this spirit that one must keep
exploring for the viable classical scenario, for the simple fact that away from the Planck
region the universe looks classical. It is to be noted that in a classical bouncing scenario
the singularity is avoided by construction and the universe bounces from a contracting
phase to an expanding phase before reaching the Planck length. Therefore, until the final
theory of quantum gravity is constructed, it is of equal importance to explore the classical
dynamics due to non trivial Langrangian which can possibilly mimic a bouncing scenario.
In recent past study of anisotropic bouncing scenario has been carried out by authors [9]
and the necessary and sufficient conditions for a nonsingular bounce to occur in terms of the
dynamical variables are derived. In this paper we consider a noncanonical scalar field with
a general function of kinetic term F(X), where X = − 1

2 ∂µφ∂µφ. These theories are originally
motivated to provide a large tensor to scalar perturbation in inflationary settings [10–12].
Dark energy with a general kinetic term F(X) is modeled first in [13]. For other variants
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of models of dark energy in this context refer to [14]. Other works related to unifying
dark matter, dark energy and/or inflation for noncanonical scalar field models are studied
in [15–18]. In order to study the phase space in this model, we write the first order equations
of motion in terms of dimensionless dynamical variables [19]. The motivation to use
noncanonical scalar field as matter is to construct nonsingular bouncing models. The phase
space analysis of a cosmological model with scalar field Lagrangian F(X) − V(φ) and
matter for an FRW flat background is given in [20]. The condition for nonsingular bounce
is also discussed in [20]. In order to explore the behaviour of curvature parameter near
bounce in a nonsingular bouncing model we do a phase space analysis in an FRW closed
and open universe. This can be easily extended to other nonsingular bouncing models.

We study the cosmology of a curved, closed and open, universe with a matter La-
grangian of the form F(X)−V(φ) and adhoc matter. In Section 2 we write the Einstein’s
equation in terms of dynamical variables suitable for the analysis of a bouncing scenario in
FRW closed and open universe. Following this we find the fixed points and their stability
in Section 3. It should be noted that one of the primary goals of this paper is to look
for bouncing solution that goes to a stable fixed point at late-time. The importance of
the Section 3 lies in the fact that it would give us the region of parameter space allowed
by the stability criteria for stable fixed points. Thus, we intend to look for cosmological
solutions whose values of parameters being picked, strictly, from the allowed region. Next,
conditions for existence of nonsingular bouncing solution is derived in terms of dynamical
variables in Section 4. We summaries our results in Section 5.

2. Einstein Equations in FRW Closed and Open Universe

The action for our model is given by

S =
∫

d4x
√
−g[

1
2

R + F(X)−V(φ) + Lm] (1)

where Lm is the lagrangian of the matter field.
To see the behaviour of curvature parameter of the spacetime in a nonsingular bounc-

ing scenario we work with a FRW closed and open universe. The line element of the same
is given by:

ds2 = −dt2 + a2(t)[
dr2

1− kr2 + r2dθ2 + r2sin2θdφ2]. (2)

where k = +1 denotes closed and k = −1 denotes an open universe respectively.
The Hubble parameter H is defined as

H =
1
a

da
dt

In terms of Hubble parameter, the Einstein equations take the following form

dH
dt

= −H2 − 1
6
(ρ + 3p) ,

H2 =
ρ

3
− k

a2 , (3)

where ρ = ρφ + ρm and p = pφ + pm.
Here the energy density ρφ and pressure pφ of the scalar field is found to be

ρφ = 2XFX − F + V ,

pφ = F(X)−V(φ) , (4)

and ρm and pm are the energy density and pressure due to the term Lm.
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Substituting Equation (4) in first and third line of Equation (3), we get

dH
dt

= −H2 − 1
6
(2XFX − F + V + ρm + 3(F−V) + 3pm) (5)

H2 =
2XFX − F

3
+

V
3
− k

a2 +
ρm

3
(6)

Here we further define few more variables which are useful for defining dimensionless
dynamical variables. They are

ρk = 2XFX − F ,

wk =
F

2XFX − F
,

σ = − 1√
3|ρk|

dlogV
dt

, (7)

where ρk is the kinetic part of the energy density ρφ, wk is the ratio of kinetic part of the
pressure pφ to the ρk and σ is the auxiliary variable which depends on the variation of
potential with time.

Neglecting the interaction between scalar field and matter, continuity equation for ρφ

in terms of dimensionless time variable N (dN = Hdt), is

d
dN

(2XFX − F + V) + 6XFX = 0. (8)

Now we define a set of dimensionless dynamical variables which is suitable for
nonsingular bounce models. Relevance of these variables that they remain finite during the
entire evolution across bounce. The dynamical variables are

x̃ =

√
3H√
|ρk|

, ỹ =

√
|V|√
|ρk|

sign(V) , z̃ =

√
|k|√
|ρk

sign(z̃) , Ω̃m =
ρm

|ρk|
. (9)

Here sign(z̃) ≡sign(k) denotes FRW closed universe for +1 and open for −1. Using
Equations (3), (8) and (9) and parameters defined in Equation (7), the evolution equations
of x̃, ỹ and z̃ are written as,

dx̃
dÑ

= −3
2

[
(wk − wm)sign(ρk) + (1 + wm)(x̃2 − ỹ ˜|y|) + z̃|z̃|

3
(1 + 3wm)

]
+

3
2

x̃[(wk + 1)x̃− σỹ|ỹ|sign(ρk)],

dỹ
dÑ

=
3
2

ỹ[−σ + (wk + 1)x̃− σỹ|ỹ|sign(ρk)],

dz̃
dÑ

= −z̃x̃ +
3
2

z̃(x̃(1 + wk)− ỹ|ỹ|sign(ρk)),

dΩ̃m

dÑ
= −3(1 + wm)x̃Ω̃m − Ω̃m[3σỹ|ỹ|sign(ρk)− 3x̃(1 + wk)] ,

(10)

where dÑ =
√
|ρk |

3 dt and the constraint equation relating dynamical variables is

x̃2 − ỹ|ỹ|+ z̃|z̃| − Ω̃m = 1× sign(ρk). (11)
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The equation for parameter σ becomes [20]

dσ

dÑ
= −3σ2(Γ− 1) +

3σ(2Ξ(wk + 1) + wk − 1)
2(2σ + 1)(wk + 1)

[
(wk + 1)x̃− σỹ2

]
(12)

where Ξ = XFXX
FX

and Γ =
VVφφ

Vφ
.

For our model we have taken power law form for F(X) = F0Xη , where F0 is a constant.
For this form of F(X), wk =

1
2η−1 and Ξ = η − 1.

Potential V(φ) is taken as V(φ) = V0e−cφ, where V0 and c are constants with positive
values. For this choice of V(φ), Γ becomes unity.

In the next section, we do a fixed point analysis of dynamical equations for x̃, ỹ, z̃ and
σ. The evolution of Ω̃m is determined from the constraint Equation (11).

3. Fixed Point Analysis

In this section, we do a fixed point analysis of our system of dynamical equation in
order to extract the qualitative information about the nature of solution. Fixed points are
calculated by taking the first derivative of the dynamical variables to be zero. The stability
of a fixed point is determined from the behavior of a small perturbation around that
fixed point.

We get the set of fixed points x̃c, ỹc, z̃c and σc by solving the following set of equations
simultaneously (where the subscript c denotes fixed points). Now, if we define the slopes of
the dynamical variables x̃, ỹ, z̃ and σ as f (x̃, ỹ, z̃, σ), g(x̃, ỹ, z̃, σ), h(x̃, ỹ, z̃, σ) and i(x̃, ỹ, z̃, σ).
The set of equations we need to solve to obtain the fixed point is

f (x̃, ỹ, z̃, σ) ≡ dx̃
dÑ

= 0 ,

g(x̃, ỹ, z̃, σ) ≡ dỹ
dÑ

= 0 ,

h(x̃, ỹ, z̃, σ) ≡ dz̃
dÑ

= 0 ,

i(x̃, ỹ, z̃, σ) ≡ dσ

dÑ
= 0 (13)

where,

f (x̃, ỹ, z̃, σ) ≡ −3
2
[(wk − wm)(signρk) + (1 + wm)(x̃2 − ỹ|ỹ|) + (1 + 3wm)

z̃|z̃|
3

]

+
3
2

x̃[(wk + 1)x̃− σỹ|ỹ|sign(ρk)] ,

g(x̃, ỹ, z̃, σ) ≡ 3
2

ỹ[−σ + (wk + 1)x̃− σỹ|ỹ|sign(ρk)] ,

h(x̃, ỹ, z̃, σ) ≡ −3z̃x̃ + 3z̃x̃(1 + wk)− 3z̃ỹ|ỹ|sign(ρk) ,

i(x̃, ỹ, z̃, σ) ≡ 3
2
[2Ξ(wk + 1) + (wk − 1)]

2(2σ + 1)(wk + 1)
[(wk + 1)x̃− σỹ2]. (14)

The corresponding fixed point for Ω̃m can be found using the constraint Equation (11).
The stability of the fixed points can be examined from the evolution of perturbations

around fixed points. Now, if (x̃c, ỹc, z̃c, σc) is a fixed point and δx̃ = x̃ − x̃c, δỹ = ỹ− ỹc,
δz̃ = z̃− z̃c and δσ = σ− σc be the respective perturbation around it, then the evolution of
the perturbation is determined by
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δ ˙̃x = ˙̃x = f (x̃c + δx̃, ỹc + δỹ, z̃c + δz̃, σ + δσ) ,

δ ˙̃y = ˙̃y = g(x̃c + δx̃, ỹc + δỹ, z̃c + δz̃, σ + δσ) ,

δ ˙̃z = ˙̃z = h(x̃c + δx̃, ỹc + δỹ, z̃c + δz̃, σ + δσ) ,

δσ̇ = σ̇ = h(x̃c + δx̃, ỹc + δỹ, z̃c + δz̃, σ + δσ) (15)

The evolution equations,upto first order, for these perturbations are
δ ˙̃x
δ ˙̃y
δ ˙̃z
δσ̇

 = A


δx̃
δỹ
δz̃
δσ

 (16)

where the matrix is

A =


∂ f
∂x̃

∂ f
∂ỹ

∂ f
∂z̃

∂ f
∂σ

∂g
∂x̃

∂g
∂ỹ

∂g
∂z̃

∂g
∂σ

∂h
∂x̃

∂h
∂ỹ

∂h
∂z̃

∂h
∂σ

∂i
∂x̃

∂i
∂ỹ

∂i
∂z̃

∂i
∂σ

 (17)

is the Jacobian matrix and is evaluated at the fixed point (x̃c, ỹc, z̃c, σc) and hence each entry
of A is a number. The solution of the system of equations can be found by diagonalizing
the matrix A. A non trivial solution exists only when the determinant |A− ˘I| is zero. Thus,
solving this equation in λ we would get all the eigen values of the system corresponding to
each fixed points.

We have two cases: one with positive kinetic term, sign(ρk) = +ve and other one with
negative kinetic term, sign(ρk) = −ve..

3.1. Closed Universe
3.1.1. Case I, with signρk = +ve

In this case we study the fixed points for all possible values of parameters in an FRW
closed universe. The fixed point (0, 0, 0, 0) is obtained for wk = wm signifying all the
dynamical variables x̃, ỹ, z̃ and σ, going to zero at late times. It is a nonhyperbolic fixed
point as the eigen value of A for this is (0, 0, 0, 0). It’s stability cannot be decided from
our first order analysis of perturbations. From now onwards eigenvalues would mean
eigenvalues of matrix A.

The second fixed point (1, 0, 0, 0) denotes a late time kinetic dominated universe
with other dynamical variables ỹ, z̃ and σ becoming zero. In this case eigenvalues are
( 3(wk+1)

2 ,−1 + 3
2 (1 + wk), 3

2 (−1 + wk +
(1−wk)(1+wk)

wk
), 3(wk − wm)). This is a stable fixed

point for the region of parameter space shown in the Figure 1.
The next stable fixed point in this subsection is (−1, 0, 0, 0) with eigenvalue

(1+ 3
2 (−1−wk), 3

2 (−1−wk),
3(−1−wk)(−1+wk+

(1−wk)(1+wk)
wk

)

2(1+wk)
, 3

2 (−1−wk)− 3
2 (1+wk)+ 3(1+

wm)) shows again a late time kinetic dominated phase but with a negative value of Hubble
parameter H signifying a contracting universe. This fixed point is found to be stable for the
region of parameter space shown in Figure 2. The point (−1, 0, 0, 0) may not be important
from bouncing point of view, as we need the universe to transit to an expanding phase to
be discussed in Section 4.

The remaining fixed points, in this section, being (0, 0,
√

3
√−wk+wm√

1+3wm
, 0) for wm > wk

and wm > − 1
3 , (0,

√
wk−wm√
1+wm

, 0, 0) with wk > wm and wm > −1, with eigen values

(0, 0, −
√

3
2

√
wk + 3w2

k − wm − 3wkwm,
√

3
2

√
wk + 2w2

k − wm − 3wkwm),
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(0, 0,− 3
2

√
wk+w2

k−wm−wkwm
2 , 3√

2

√
wk + w2

k − wm − wkwm) are also nonhyperbolic points.
The stability of such fixed points goes beyond the linear stabilty analysis. All the fixed
points and their stability conditions are noted in Table 1.

Table 1. Stablity Analysis of fixed points for closed universe with sign(ρk) = +ve.

Fixed Points (xc, yc, zc, σc) Stability Conditions

(0, 0, 0, 0) for wk = wm Can’t decide
(1, 0, 0, 0) Stable (see Figure 1)
(−1, 0, 0, 0) Stable (see Figure 2)
(0, 0,

√
3
√
−wk+wm√
1+3wm

, 0) with wm > wk and wm > − 1
3

Can’t decide

(0,
√

wk−wm√
1+wm

, 0, 0) with wk > wm and wm > −1 Can’t decide

- 1000 - 500 0 500 1000 1500 2000

- 80

- 60

- 40

- 20

0

wm

w
k

Figure 1. Allowed region of parameter space for the fixed point (1, 0, 0, 0) in closed universe.

- 10 - 8 - 6 - 4 - 2 0 2

- 3

- 2

- 1

0

1

2

3

wm

w
k

Figure 2. Allowed region of parameter space for the fixed point (−1, 0, 0, 0) in closed universe.
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3.1.2. Case II, sign(ρk) = −ve

In this section, we state the results of stability analysis of our dynamical variables
for the negative sign of kinetic energy density. The fixed points are found to be (0, 0, 0, 0),

(0, 0,−
√

3
√

wk−wm
1+3wm

, 0) and (0,
√
−wk+wm

1+wm
, 0, 0) with eigen values (0, 0, 0, 0), (0, 0,

−
√

3
2

√
−wk − 3w2

k + wm + 3wkwm,
√

3
2

√
−wk − 3w2

k + wm + 3wkwm) and

(−3, 0, 0 rwk−w2
k+wm+wkwm√

2
, 3

√
wk−w2

k+wm+wkwm√
2

) respectively. All these fixed points are non-
hyperbolic and tabulated in Table 2.

Table 2. Stablity Analysis of fixed points for closed universe with sign(ρk) = −ve

Fixed Points (xc, yc, zc, σc) Stability Conditions

(0, 0, 0, 0) for wk = wm Can’t decide

(0, 0,−
√

3
√

wk−wm
1+3wm

, 0) Can’t decide

(0,
√
−wk+wm

1+wm
, 0, 0) Can’t decide

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

x
~

N
~

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5  1  1.5  2  2.5  3  3.5
N
~

y
~

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.5  1  1.5  2  2.5  3
N
~

z
~

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5  1  1.5  2  2.5  3  3.5
N
~

σ

Figure 3. Evolution of the dynamical variables x̃ (top left), ỹ (top right), z̃ (bottom left) and σ (bottom
right) for the fixed point (x̃c, ỹc, z̃c, σc) = (1, 0, 0, 0) with the values of parameters sign(z̃) = +ve,
wk = −2.0, wm = 1/3 and sign(ρk) = +ve for different initial conditions.

3.2. Open Universe
3.2.1. Case I, with signρk = +ve

In this case we study the fixed points for all possible values of parameters in an
FRW open universe. The fixed point (0, 0, 0, 0) is obtained for wk = wm signifying all the
dynamical variables x̃, ỹ, z̃ and σ, going to zero at late times. It is a nonhyperbolic fixed
point as the eigen value of A for this is (0, 0, 0, 0). It’s stability cannot be decided from our
first order analysis of perturbations.

The second fixed point (1, 0, 0, 0) denotes a late time kinetic dominated universe
with other dynamical variables ỹ, z̃ and σ becoming zero. In this case eigenvalues are
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( 3(wk+1)
2 ,−1 + 3

2 (1 + wk), 3
2 (−1 + wk +

(1−wk)(1+wk)
wk

), 3(wk − wm)). This is a stable fixed
point for the region of parameter space shown in the Figure 4.

The next stable fixed point in this subsection is (−1, 0, 0, 0) with eigenvalue (1 +

3
2 (−1−wk), 3

2 (−1−wk),
3(−1−wk)(−1+wk+

(1−wk)(1+wk)
wk

)

2(1+wk)
, 3

2 (−1+wk)− 3
2 (1+wk)+ 3(1+wm))

shows again a late time kinetic dominated phase but with a negative value of Hubble pa-
rameter H signifying a contracting universe. This fixed point is found to be stable for the
region of parameter space shown in Figure 5. The point (−1, 0, 0, 0) may not be important
for bouncing point of view, as again, we need the universe to transit to an expanding phase
to be discussed in Section 4.

The remaining two fixed points being (0, 0,−
√

3
√

wk−wm√
1+3wm

, 0) with wk > wm and wm >

− 1
3 and (0,

√
wk−wm√
1+wm

, 0, 0) with wk > wm and wm > −1 with eigen values

(0, 0,−
√

3
2

√
wk + 3w2

k − wm − 3wkwm,
√

3
2

√
wk + 3w2

k − wm − 3wkwm) and

(0, 0,− 3√
2

√
wk + w2

k − wm − wkwm, 3√
2

√
wk + w2

k − wm − wkwm) are also nonhyperbolic
points. The stability of such fixed points goes beyond the linear stabilty analysis. All the
fixed points and their stability are noted in Table 3.

Table 3. Stablity Analysis of fixed points for open universe with sign(ρk) = +ve.

Fixed Points (xc, yc, zc, σc) Stability Conditions

(0, 0, 0, 0) for wk = wm Can’t decide
(1, 0, 0, 0) Stable (see Figure 4)
(−1, 0, 0, 0) Stable (see Figure 5)

(0, 0,−
√

3
√

wk−wm√
1+3wm

, 0) with wk > wm and wm > − 1
3

Can’t decide

(0,
√

wk−wm√
1+wm

, 0, 0) with wk > wm and wm > −1 Can’t decide

- 10000 - 5000 0 5000 10000

- 10000

- 8000

- 6000

- 4000

- 2000

0

wm

w
k

Figure 4. Allowed region of parameter space for the fixed point (1, 0, 0, 0) in open universe.
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- 1000 - 800 - 600 - 400 - 200 0 200

- 1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

wm

w
k

Figure 5. Allowed region of parameter space for the fixed point (−1, 0, 0, 0) in open universe.

3.2.2. Case II, sign(ρk) = −ve

In this section, we state the results of stability analysis of our dynamical variables for
the negative sign of kinetic energy density. The fixed points are found to be (0, 0, 0, 0), (0, 0,

−
√

3(−wk+wm)
1+3wm

, 0) with wm > wk and wm > − 1
3 , and (0,

√
−wk+wm

1+wm
, 0, 0) with wm >

wk and wm > −1 with eigen values (0, 0, 0, 0), (0, 0,−
√

3
2

√
−wk − 3w2

k + wm + 3wkwm,√
3
2

√
−wk − 3w2

k + wm + 3wkwm) and (0, 0,−
3
√
−wk−w2

k+wm+wkwm√
2

,
3
√
−wk−w2

k+wm+wkwm√
2

) re-
spectively. All these fixed points are nonhyperbolic and tabulated in Table 4.

Table 4. Stablity Analysis of fixed points for open universe with sign(ρk) = −ve.

Fixed Points (xc, yc, zc, σc) Stability Conditions

(0, 0, 0, 0) for wk = wm Can’t decide

(0, 0,−
√

3(−wk+wm)
1+3wm

, 0) with wm > wk and wm > − 1
3

Can’t decide

(0,
√
−wk+wm

1+wm
, 0, 0) with wm > wk and wm > −1 Can’t decide
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Figure 6. Evolution of the dynamical variables x̃ (top left), ỹ (top right), z̃ (bottom left) and σ (bottom
right) for the fixed point (x̃c, ỹc, z̃c, σc) = (1, 0, 0, 0) with the values of parameters sign(z̃) = −ve,
wk = −2.0, wm = 1/3 and sign(ρk) = +ve for different initial conditions.

4. Bouncing Scenario

Now we obtain the conditions for non singular bounce to occur and also show the
evolution of dynamical variables numerically. A nonsingular bounce is attained whenever
the universe passes from a contracting phase to an expanding phase through a minimum
value of the average scale factor a(t), but not zero. Mathematically, it satisfies

(H)b ≡
1

ab(t)

(
da(t)

dt

)
b
= 0, (18)

where subscript b denotes value of the variable at the bounce, and(
d2a(t)

dt2

)
b
> 0 (19)

for minimum to occur. This implies(
dH
dt

)
b
=

(
ä
a

)
b
−
(

ȧ
a

)2

b
> 0 (20)

Now, writing the above conditions in terms of dynamical variables for bouncing, we
get x̃b = 0 and

(
dx̃
dÑ

)
b
> 0 which translate to the following equation

(
dx̃
dÑ

)
b
= −3

2

[
(wk − wm)(signρk) + (1 + wm)(−ỹ|ỹ|) + (1 + 3wm)

3
z̃|z̃|
]
> 0. (21)

This implies(
ỹ ˜|y|(1 + wm)− z̃|z̃|(1 + 3wm)

)
b
> 1× sign(ρk)(wk − wm). (22)
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At the bounce we then obtain the constraint equation among dynamical variable as(
x̃2 − ỹ ˜|y|+ z̃|z̃| − Ω̃m

)
b
= −ỹ ˜|y|+ z̃|z̃| − Ω̃m = 1× sign(ρk). (23)

Now, for different negative initial conditions of x̃ (contracting phase), Figure 3 (top
left) and Figure 6 (top left) for closed and open universe respectively, show its transition
to positive values (expanding phase) crossing zero (bounce). The bouncing is guaranteed
by the positivity of the slope of x̃ as shown in Figure 7 (left plot for closed and right
plot for open). Thus, top left of Figures 3, 6 and 7, together, do indeed represent stable
bouncing scenario in FRW closed and open universe. This is obtained by setting the values
of equation of state parameters wk = −2 (η = 1/4), wm = 1/3 and sign(ρk) = +ve and
sign(y) = +ve. The evolution of other dynamical variables can be seen in Figures 3 and 6,
which show their asymptotic evolution to the respective fixed points for the same choice
of parameters.

It can be seen that the fixed point (x̃c, ỹc, z̃c, σc) = (1, 0, 0, 0) does give rise to a stable
bouncing universe as it satisfies Equations (22) and (23) for open (sign(z̃)=-ve) and closed
(sign(z̃)=+ve) universe. From this analysis, we conclude that finally after the bounce our
universe at late times is driven by kinetic energy density in both the cases. The other fixed
point (−1, 0, 0, 0), though stable, can not give rise to a bouncing scenario as it ends up with
a negative value of Hubble parameter, H, signifying a late time contracting phase.

Also, we show the behaviour of curvature parameter, z̃, in this nonsingular bouncing
set up. The curvature parameter increases initially in the contracting phase reaching an
extremum at the bounce and then decreases to zero in the expanding phase as shwon in
Figure 8 for both open and closed universe. Thus, the curvature parameter remains finite
at the bounce as expected in a nonsingular bouncing scenario and at late time universe
becomes flat irrespective of whether we start initially with closed or open.This may be
useful for building realistic models.

The comparison between bouncing solutions for open and closed is done in Figure 9.
It has been found that bouncing occurs earlier in the case of open than in the closed
universe as shown in left hand side of Figure 9 for the same set of initial conditions
and parameters. Also, it is noted that, though, the solutions differ appreciably near the
bounce, they approach to the same value at late time owing to zero value of the curvature
parameter. The nonsingular bounce happens only for negative values of Ω̃m with our
choice of parameters as shown in Figure 9 (right) for both open and closed universe.

Finally we show the effect of different values of η on the behavior of bouncing solutions
in Figure 10 for both closed and open universe. All the plots are generated for the same set
of initial conditions and the same set of parameters wm = 1/3, sign(ρk) = +ve but with
three different values of parameters η = 1/4, 1/6 and 1/8. It has been observed that the
value of η has a direct impact on the occurence of bouncing point. Indeed, the position
of bouncing point is delayed as we decrease the value of η for both closed and open
universe as shown in Figure 10 (top left and top right). The bottom left and bottom right of
Figure 10 indicate the effect of η on the curvature parameter for both closed and open cases
respectively. It has been found that the magnitude of maximum value of z̃, at the bounce,
decreases as we decreases the value of η.
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5. Conclusions

A cosmological scenario with a noncanonical scalar field and matter is explored in this
work. Using dynamical equations for a set of dimensionless dynamical variables, we find
all the fixed point for the two cases with positive and negative kinetic energy density term
in FRW closed and open universe. Allowed region of parameter spaces for stability of fixed
points are shown for both cases. The necessary and sufficient conditions for a nonsingular
bounce are obtained in terms of the dynamical variables. Thus, stable bouncing solutions
are obtained satisfying nonsingular bouncing conditions and stability criteria. This is
achieved for the negative energy density of matter, Ω̃m, with equation of state parameter
wm = 1/3 in both closed and open universe. In addition to this, the finitude of curvature
parameter at the bounce is obtained as expected in a nonsingular bouncing scenario and
universe becomes flat at late time irrespective of whether we start with a closed or open
one. Finally, the effect of the parameter η on the behaviour of bouncing solution is noted. It
is seen that the point of occurence of bounce is delayed as we decrease the value of η and
the magnitude of value of curvature parameter at the bounce decreases with η for both
open and closed universe.

We restrict our analysis to a positive sign of potential. It is straightforward to extend
our analysis for a negative potential by changing the parameter sign(y) to −1.

As mentioned above this work is in the classical regime. And it is obvious that
there are two ways to solve the initial singularity: Either by invoking modification in
the matter sector or by modifying the gravity sector which includes modified theories of
gravity. However Non of these modifications deal with the physics at the Planck region.
In the popularly known inflationary paradigm which predicts the formation of structure,
still treats the spacetime to be classical and obviously this can not be correct at the high
curvature limit.

This is interesting and a matter of paramount importance to include quantum effects.
In the next seires of work we propose to formulate the present model in the framework of
loop quantum cosmology. The loop quantum cosmology in the case of minimally coupled
scalar field is well studied. Our future work would involve in studying the effective
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dynamics due non-trivial Lagrangian like the present case. This would be followed by a
detailed dynamical system analysis of the phase space.
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