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Abstract: Geometric optics approximation sufficiently describes the effects in the near-earth environment, and
Faraday rotation is purely a reference frame effect in this limit. A simple encoding procedure could mitigate the
Faraday phase error. However, the framework of geometric optics is not sufficient to describe the propagation of
waves of large but finite frequencies. So, we outline the technique to solve the equations for the propagation of
an electromagnetic wave up to the subleading order geometric optics expansion in curved spacetimes. For this,
we first need to construct a set of parallel propagated null tetrads in curved spacetimes. Then we should use the
parallel propagated tetrad to solve the modified trajectory equation. The wavelength-dependent deviation of
the electromagnetic waves is observed, which gives the mathematical description of the gravitational spin Hall
effect.

Keywords: Geometric optics; spin Hall effect; Gravitational Faraday rotation; Spin optics; Parallel propagation;
Fermi transport

1. Introduction

Wigner rotation/phase, a special relativity effect, is the dominant source of relativistic errors
during quantum communications in the near-Earth environment [1,2]. The typical magnitude of
the Wigner phase during communication with the earth orbiting-Satellite (in some specific settings)
was estimated to be of the order 10741072 [3]. Another form of relativistic error is due to
the gravitational polarization rotation (or gravitational Faraday effect) [4,5], which manifests in
various astrophysical systems, like gravitational lensing phenomena [7] or accretion by astrophysical
black holes [6]. The Gravitational Faraday effect has received numerous theoretical investigations,
primarily within the geometric optics approximation [4,5,7-9], and also from the perspective of
quantum communications[10]. Even if at the leading order, the gravitational Faraday rotation is pure
gauge effect (depending on the emitter’s and observer’s orientation), one cannot simply disregard
it [3].

Electromagnetic waves from astrophysical sources might have propagated through curved
spacetimes. If the characteristic wavelength of the electromagnetic waves is small, but cannot be
neglected, compared to the scale of the inhomogeneity of spacetime curvature, the necessity of the
subleading order geometric optics correction arises. This subleading order correction includes wave
effects, which affect both the propagation and polarization properties of waves [11]. Interaction of
spin/polarization with external orbital angular momentum imparted by spacetime curvature results in
the gravitational spin Hall effect [12—-19]. Among various approaches to solving the wave equations
in curved spacetimes and obtaining the gravitational spin Hall effect, we are particularly interested
in generalizing the geometric optics that use WKB formalism. Ref. [15] first demonstrated this
approach for stationary spacetimes and named the subleading order geometric optics correction as
“spin optics", as it accounts for the spin-orbit coupling. Recently this formalism has been generalized
to arbitrary spacetimes [20-22].

In Sec. 2, we present the WKB expansion for solving the electromagnetic wave equation in
curved spacetimes. Then, we obtain the modified ray trajectory in the subleading order in Sec. 3.
The polarization equation is obtained in Sec. 4 by generalizing the result that the solutions from
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the geometric optics approximation can be reduced to a set of Fermi propagated null tetrads to the
subleading order. Finally, we discuss our results and conclude this article in Sec. 5.

We consider a spacetime manifold M with the metric g, of signature (=, +,+,+) . The
phase space in that manifold is the cotangent bundle T*M, and its points are (x, p). We write X
for the complex conjugate of x. We take G = ¢ = 1 and adopt the Einstein summation convention.
A semicolon (;) denotes the covariant derivative along the curve, A denotes the parameter of
electromagnetic wave curves and X = dx/dA. We use the sign convention for the curvature adopted
in Ref. [23].

2. WKB formulation

We begin by writing the Maxwell equations in curved spacetime

Fa‘B;zx = _]‘B, (D
Fapry + Frasp + Fpyn = 0. @

Eq. (2) is identically satisfied if we write the electromagnetic field tensor F*P in terms of the vector
potential A*
Fup = Apa — Aup- 3)

Now, let us use available gauge freedom, say the Lorenz gauge condition, in the Maxwell equations
to constrain the vector potential A%, A*,, = 0. Substituting this into Eq. (1), we obtain the equation
for the electromagnetic wave

—A L REAP = I, @)

where R%, is the Ricci tensor.
To solve the electromagnetic wave equation in the high-frequency regime, we start with the
following ansatz for the vector potential

ADL — arxeicuS, (5)

where a® is the complex amplitude that changes slowly, and wS is the real phase that varies rapidly.
Here, w represents the characteristic frequency of the wave. The gradient of the phase gives the
wave vector, I, = S.,. We write the polarization vector as m* = a®/a and the square amplitude
asa = (a""aa)l/ 2 After fixing notations for the wave vector and polarization vector, let us expand

them in powers of 1/w as

llX llX
R o (6)
mt  m4
m* =m§ + ;1 + w—g +.. (7

First, we give the reason for separately expanding both the polarization and propagation vectors in
powers of w. Unlike in conventional WKB expansion, higher order phase factors like Sy (A) cannot
be absorbed into the amplitude m§ by transformation m* — ¢!S1(M)/ @& The reason is that this
transformation property will be constrained by the necessity to use the Fermi propagated null tetrad

as follows
)

dA

Now, we substitute the vector potential from the WKB ansatz onto the Lorenz gauge condition,
which gives

=0. ®)

1 [ a;
I§mon + = (lg‘mm + gy — z(fmg‘ + mg,.a)) -0, )
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up to the subleading order in w. Again, we substitute the vector potential into the source-free wave
equation (Eq. (4) with J* = 0), which up to the subleading order in w, gives

po 1 p B if P BB aiB)) _
mologly + o (m‘i‘loﬁlo + 2mylgly — 1(m6‘lo;ﬁ + ng;ﬁlo +2 p m‘(’)‘lo)> =0. (10)
We now calculate 7o, J* + 110, J*, which is the identically vanishing quantity

2
logly + = (g — by) I = 0. ()

This equation could be seen as the generalized dispersion relation up to the subleading order
geometric optics approximation. In obtaining this, we have substituted 71510, = 1 and used

%(ﬁ”lama;ﬁ — m“ﬁ”la;‘g) = iﬁilxm“;ﬁ; = b‘g (12)
3. Propagation equation up to the subleading order

To obtain the subleading order correction to the trajectory equation, we start with the generalized
dispersion Eq. (11). This is also the Hamilton-Jacobi equation for the phase S such that S, =
loa + 1o/ w. The corresponding Hamiltonian on the phase space T*M is

1 1 1
H(x,l) = Eg“‘BlOleO‘B + Zg“ﬁ(ll,x — bzx)lOﬁ = ﬁg“ﬂ(wloa + llzx — b,x)(wlolg + 1113 — blg)

13)
Hamilton’s equations of motion are
dx® o oH _ S4B b‘B
a8 <lﬁ W)’ (14
and
dy, ~ oH _1 .yxvagw +l Wy aby, (15)

dar T oxx T 2 ot T wd Mo
where Eq. (14) is used to obtain the last equality. Hence, we could obtain the corresponding solution
of the Hamilton-Jacobi equation (11) from [24]

S(x,1) = /A(x“z,x ~ H(x,1))dA = %/x”‘x“d)\ + é / buitdA = So— S, (16)

where Egs. (13) and (14) are used to obtain the third equality. Here, the additional phase Sp is
polarization-dependent and could be viewed as the Berry phase, in analogy to the related phenomena
in an inhomogeneous medium. The circularly polarized modes propagating in curved spacetimes
acquire this geometric phase [25-27], which manifests dynamically, thereby giving the subleading
order term in the propagation equation. This additional topological term results in noncollinear
velocity and momentum (see Eq. (14)), a typical feature of waves propagating in anisotropic media
(see, for example, [29]). Refs. [20], and [28] considered this form of action to obtain the spin
Hall effect of electromagnetic waves. Also, in analogy with the spin-orbit coupling of light in
gradient-index medium and that of electrons occurring in the Dirac equation (see, for example,
Refs. [12,28,30,31]), we could identify o7, = —b, = —inﬁﬁmﬁ;“ with the Berry gauge field. The
curvature associated with it

0.4, B 8@%,3
oxP  ox®

= bﬁ;lX — b’X;B = k“/g (17)

could be identified with a field tensor associated with the vector potential <7,. Simplification of
Eq. (15) gives [20]

D?x 1 D?x® i -
e S ~ & o lbmlting, (18)

(b‘u;v - bv;‘u)xv - 0 — W ~ _5 ‘B“I/ll/
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where we have used
ka/ﬂ = bﬁ;tx - btx;ﬁ = _iRoc‘Byvmymv + i(mv;zxmv;ﬁ - mv;ﬁmv;uc)/ (19)

to obtain the last equality. Thus, the electromagnetic wave propagates in a null but nongeodesic
curve in the subleading order geometric optics.

4. Polarization equation up to the subleading order

Eqgs. (A36) and (A37) are evolution equations for the propagation and polarization vectors, and
to generalize them to the subleading order, let us write Fermi derivative operator Dy along the ray
x* [15]

DiA* =[] A*, —w, ATn" + ATn,w", (20)

where A% is an arbitrary vector and w* = lg x*., is an identically vanishing quantity in the geometric
optics approximation. We have D;x* = 0 as X7x, = 0. A vector A" is said to be Fermi propagated
if its Fermi derivative Dy A® is zero, and it can be shown that if two vectors are Fermi propagated,
then their scalar product is constant. Let us consider this statement in the context of null tetrads
(X%, n™, m*,m"): this set of null tetrads satisfies the orthogonality and completeness relations given
in Egs. (A33)-(A35) everywhere on the ray, provided that they are Fermi propagated, in which case
they obey

lgn"‘;ﬁ = wﬁn/gn”‘, lgm"‘;ﬁ = wﬁmﬁn"‘. 1)

Next, we fix wﬁnﬁ = 0 by restricting the following transformation property of null tetrads
X = Fx%,n% — F1n%, (22)

where F is an arbitrary real function. This restriction in the transformation fixes the parameter A
along the curve up to some rescaling A — F~1A. This way of choosing a parameter is known as
canonical parametrization [20], which leads to the following relations

lgn“;ﬁ —0, lgm“;ﬂ = whmgn®, 23)

These relations generalize Eqs. (A33)-(A37) of geometric optics.

The polarization vector is determined solely by the propagation direction or momentum of
photons, while the momentum of particles is solely a function of position in curved spacetimes.
Thus, the Berry connection determines how the polarization of a wave evolves in curved spacetimes
as it is also the function of position only. We substitute w® = lg' x“,, 8 from Eq. (18) into Egs. (23) to
obtain the following equations for the evolution of the polarization vector

it =0, 1bm" ;= iszgmgmgmgng. (24)

From these equations, one can show that null tetrads (%%, n®, m*, m") satisfies the normalization
and orthogonality relations of Eqs. (A33)-(A35), up to the subleading order in 1/w. However, the
field does not satisfy all the polarization Eqgs. (A43)-(A45), from which we can infer that it is not
self-dual in the limit of spin optics [22].

In order to obtain a self-dual solution of the Maxwell equations (1) and (2) in the limit of spin
optics, we define the Fermi-like derivative operator

DhA" = If Al —wp AP + APng — L (AultmpAPm® — X Mg AP ). (25)

The vanishing of the Fermi-like derivative, D} A* = 0, of any two tetrad components (%%, n%, m*, /i)
implies that the scalar product of these two components is preserved except that of m® and m* with
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their self. If tetrads with vanishing Fermi-like derivatives satisfy the following orthogonality and
completeness relations at some point on the trajectory
my = %%, = XM, =0, m*i, =1, (26)
n*my = n“ny = n"m, =0, n*l, = —1, 27
then these relations hold throughout the trajectory. However, in general, the polarization vectors

are not null anymore, m*m, # 0 and m*m, # 0, along the circularly polarized trajectory in the
subleading order approximation. Moreover, these tetrad evolves as

i

P, =0, Pm®, = wPmgn® — =X, 1Mi". 28
0’ p oMM g = whmmgn — At (28)
We could solve these equations to obtain [22]

my = (If = b")mogngy — idiiy,  nj =0. (29)

These components of tetrad describe the propagation of right-handed circularly polarized light rays
in curved spacetime up to the subleading order geometric optics expansion. The reason is that they
are the solution of the Maxwell equation in the Lorenz gauge and are self-dual (since they satisfy
polarization equations (A43)-(A45)).

5. Discussion and conclusions

We have presented a WKB expansion procedure for extending the geometric optics approxi-
mation to include subleading order correction. This procedure involves the expansion of both the
amplitude and phase in terms of the characteristic frequency w, which was necessary for the use
of the Fermi-propagated tetrad. The requirement of parallel propagation of the null tetrad in the
leading order generalizes to Fermi transport in the subleading order, constraining its transformation
properties and resulting in the observer-independent spin Hall effect. Although the Hamiltonian
equation (13) includes a gauge-dependent term, the propagation equation resulting from it is observer-
independent. This is because, as explained in Eq. (8), we have restricted the U (1) gauge freedom for
the transformation of the polarization vector m* to satisfy the requirement that it is Fermi propagated
along the curve.

Funding: This research received no external funding.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: PKD is supported by an International Macquarie University Research Excellence Schol-
arship.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix F Geometric optics approximation

B

We could substitute m; = 0 = llﬁ on equations. (9)-(11) to recover the complete equations
of geometrical optics. The Lorenz condition (9) and the wave equation (10) in the leading order
approximation becomes

lnga =0= lgl()a. (A30)

Then, we calculate 77, J* from Eq. (10) by taking m} = 0 = Iy, as they are subleading order terms
and could thus be neglected in geometric optics approximation, which gives

a.
l{f;ﬁ + 2uftggmi gl +2 f i =o. (A31)
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As 1itgmy, 8 lg is purely imaginary and the remaining terms
B %p B
lo;ﬁ + 2710,
are purely real, they should vanish separately vanish, from which we obtain
B Tp 6 _ B _
lo;ﬁ +2 p Iy =0, mg‘;ﬁlo =0. (A32)

Following Egs. (A30), we can construct a set of null tetrads (13‘, ng, mg, mg), where [y and mg could
be identified with the propagation and polarization vectors, satisfying the following orthogonality
and completeness relationships

lng,X = lglo,x = lgﬁ”loa =0, mgﬁ;lo,x =1, (A33)
m"o‘mo,x = rhgﬁio“ =0, (A34)
ngmo, = nyno, = Nytitgy =0, nglon = —1. (A35)

Auxiliary null vectors 1, and 1, are not unique and can be chosen to satisfy Eqs. (A34) and (A35).
In Appendix G, we will show that circularly polarized waves satisfy equations (A34). Furthermore,
the tetrad evolves as

Blh =0, miglh =0, (A36)
niglh =0, (A37)

where Eqs. (A36) again results from geometric optics (we have used lo,;5 = log; to obtain the first
equation). ng can be chosen such that equation (A37) is satisfied.

Appendix G Self-dual and anti-self-dual fields

Let us construct the complex form of the field tensor F*# as
F® =F +isF*, (A38)

where F* denotes the Hodge dual of F*f and s = +1. As the Hodge dual satisfies (F*)* = —F,
we can prove the relation (F°)" = —isF®. Any field satisfying this relation is called the self- (or
anti-self-) dual antisymmetric field for s = +1(or — 1). One could expand a self-dual antisymmetric
field in terms of the self-dual basis

(U VW)= (mAnlAmmAm—1An), (A39)

as
FH = oyU + &;W + D, V. (A40)

In the geometric optics approximation, &g = ®, = 0. Substituting the expression for the vector
potential from Eq. (5) onto Eq. (A38), we obtain the following expression for the field F ;’ﬁl

Fli = iwZpe, (A41)

where

i
Zyp = laag — lga — a(aﬁ;a — Ayp). (A42)
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As the contraction of the self-dual field with the anti-self-dual field vanishes, we get

Z,gm*nf =0, (A43)
Zup (r?z”‘mﬁ - z“nﬁ) —0, (A44)
ZypgltmP = 0. (A45)

Complex conjugation of the amplitude Zaﬁ of the self-dual s = +1 field gives an anti-self-dual
s = —1 field. By substituting Z,4 from Eq. (A42) to Eq. (A45), one can see that it is satisfied
identically in geometric optics approximation. However, the substitutions onto equations (A43) and
(A44) gives

mgymo, = 0 = I§mg,. (A46)

These relations are presented in Eqs. (A33) and (A34) as the orthogonality conditions.
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