
Citation: Mirfendereski, D. Gauged

(Super)Conformal Models. Phys. Sci.

Forum 2023, 1, 0. https://doi.org/

Published: 17 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceedings

Gauged (Super)Conformal Models †

Delaram Mirfendereski

EUCOS, Physics Department, Baylor University, Waco, TX 76798, USA; d_mirfendereski@baylor.edu
† Presented at the 2nd Electronic Conference on Universe, 16 February–2 March 2023; Available online:

https://ecu2023.sciforum.net/.

Abstract: Superconformal mechanics describe superparticle dynamics in near-horizon geometries
of supersymmetric black holes. We systematically study the minimal compatible set of constraints
required for a gauged superconformal symmetry. Our study uncovers classes of sigma models which
are only scale invariant in their ungauged form and become fully conformal invariant only after
gauging.
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1. Introduction

(Super)conformal mechanics are believed to describe the radial motion of (super)particles
in the near-horizon (AdS) geometry of (supersymmetric) black holes [1]. We investigate
one-dimensional gauged superconformal sigma models that admit the exceptional one-
parameter supergroup D(2, 1; α) as their symmetry group. This is the most general N = 4
superconformal group in 1d [2]. In particular, we determine the set of structural and geo-
metric conditions required by the Lagrangian invariance and closure of the superconformal
algebra. As a consequence of gauging, some of these conditions undergo deformations
compared to their well-known ungauged version [3]. More interestingly, our investigation
reveals classes of 1d sigma models which are only scale invariant before gauging. They
become fully conformal invariant only after gauging a certain isometry group. For a full
discussion on the gauging procedure in the canonical formalism, the quantization of these
models, and a more comprehensive list of references, please check the original paper [4].

Among our gauged superconformal sigma models with various amounts of supersym-
metry, the N = 4B cases are particularly interesting as they include a physically relevant
subclass [4]. For α = 0, the model effectively describes an n-node Coulomb branch quiver
quantum mechanics [5,6]. This D(2, 1; 0)-invariant gauged sigma model corresponds to a
supergravity counterpart consisting of a number of dyonic BPS black holes in an asymptotic
AdS2 × S2 space-time [7,8].

2. Conformal invariant bosonic sigma models with gauged isometries

The sigma model we are interested in starting with describes the one-dimensional
motion of a bosonic particle in a d-dimensional Riemannian target space with metric
GAB(x). There is also a coupling to a background gauge field AA(x). For later convenience,
we separate the Lagrangian into linear and quadratic terms in velocity

LB = L(1)
B + L(2)

B ; L(1)
B = AA ẋA, L(2)

B =
1
2

GAB ẋA ẋB (1)

One realizes that the model is invariant under global shift transformations δxA = λIkA
I

generated by vector fields kA
I (x) provided that

LkI k J = f K
I J kK, ikI F = dvI , LkI GAB = 0. (2)
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Here, f K
I J are the structure constants of a Lie algebra, F = dA, and vI(x) are some potentials

on the target space.

2.1. Gauging procedure

We now gauge the global shift transformation by considering a time-dependent trans-
formation parameter λ(t). We then need to introduce a gauge field aI . The new transforma-
tion laws for the fields become

δλxA = λI(t)kA
I , δλaI = λ̇I + f I

JK aJλK. (3)

Moreover, one needs to replace normal time derivatives in (1) with their gauge covari-
ant version given by

DtxA = ẋA − aIkA
I . (4)

Gauging L(1)
B needs to be performed via Nöether procedure that requires adding a

new term to the first order Lagrangian as

L(1)
B = AA ẋA + aIvI . (5)

For later convenience, we now list the Lagrangian (L), gauge symmetries (GS), struc-
tural conditions (SC), algebra (A), and geometric conditions (GC) for the gauged nonlinear
sigma models

L : L(1)
B = AA ẋA + aIvI , L(2)

B =
1
2

GABDtxADtxB (6)

DtxA := ẋA − aIkA
I

GS : δλxA = λIkA
I , δλaI = λ̇I + f I

JK aJλK (7)

A : [δλ1 , δλ2 ] = δλ3 λI
3 = f JK

IλJ
1λK

2 (8)

SC : LkI k J = f K
I J kK (9)

GC : ikI F = dvI , LkI GAB = 0, LkI vJ = f K
I J vK. (10)

The last condition in (10) is derived from the middle relation in (2)1.

2.2. Conditions for conformal invariance

The next symmetry invariance we require for the gauged sigma model is conformal
symmetry. The symmetry transformations form PSL(2,R) subgroup of time reparametriza-
tions parameterized by P = u + vt + wt2

t′ =
at + b
ct + d

, δt = −P(t), (12)

Accordingly, the covariant form of transformations of the fields is given by

δPxA = PẋA + Ṗξ A

δPaI = PȧI + Ṗ(δI
J + γI

J)aJ + P̈hI (13)

1 More precisely, one obtains d(LkI vJ) = d( f K
I J vK), that in general have the following solution with constant

wI J = w[I J]

LkI vJ = f K
I J vK + wI J . (11)

Here, we restrict ourselves to the cases where vI exists and satisfies (11) with wI J = 0
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where ξA is a vector in the target space. Additionally, we needed to introduce a constant
matrix γ and potentials hI(x) whose expression is determined by demanding conformal
invariance of L(2) as

hI = GI JξAkA
J . (14)

In fact, these potentials parameterize the deformation of the special conformal trans-
formation of the gauge-covariant velocities

δDtxA =
d
dt
(DtxA)P + (δA

B + ∂Bξ A)DtxB Ṗ + ξA
⊥ P̈ (15)

where we defined ξA
⊥ := ξ A − hIkA

I . This definition, together with the expression (14)
indicates that ξ⊥ should be seen as the projection of ξ orthogonal the Killing vectors kI , i.e.

ξA
⊥ = P A

⊥ BξB ; P A
⊥ B := δA

B − GI JkIBkA
J . (16)

The conditions imposed by the conformal invariance on the background are interesting
in particular, as they reveal the role of the vectors ξA

⊥. One finds

Lξ GAB = −GAB, ξ⊥ A = −1
2

∂AK. (17)

The first condition indicates that ξ has to be a conformal Killing vector, whereas the
second condition shows that the one-form associated with ξ⊥ has to be exact. It is, in
particular required by the invariance under special conformal transformations and is in
contrast to the corresponding condition for the ungauged model [9,10]. The function K(x)
in (17) turns out to be the special conformal Nöether charge given by K = 2ξ⊥AξA

⊥ .
Summarizing, conformal symmetry (CS) requires the following in addition to (6-10):

CS : δPxA = PẋA + ṖξA δPaI = PȧI + Ṗ(γI
J aJ + aI) + P̈hI (18)

A : [δP1 , δP2 ] = δP3 P3 = Ṗ1P2 − P1Ṗ2 (19)

[δP, δλ1 ] = δλ2 λI
2 = −Pλ̇1 − ṖγI

Jλ
J
1 (20)

SC : LξkA
I = −γJ

IkA
J γI

L f JK
L = fLK

IγL
J + f JL

IγL
K (21)

Lk J h
I = γI

J − f JK
IhK, Lξ hI = γI

JhJ (22)

GC : iξ F = d(hIvI) Lξ GAB = −GAB (23)

Lξ vI = −γJ
IvJ hI = GI JξAkA

J (24)

ξ⊥A := ξA − hIkIA = −1
2

∂AK. (25)

3. Supersymmetric extension

We now move on to the supersymmetric extensions of our gauged bosonic sigma
model. Requiring supersymmetry enhances the geometric structure of the target space
and the symmetry algebra. We now need to deal with a torsionful covariant derivative
appearing in the fermionic part of the Lagrangian. Moreover, the commutator of a special
conformal transformation and a supersymmetry generates a new fermionic symmetry:
a conformal supersymmetry. Here, we skip cases with N = 1B and N = 2B with one
R−symmetry as they are well explained in detail in [4]. Here, we just remark that their
superconformal generators obey osp(1|2) and su(1, 1|1) algebras, respectively.
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3.1. The gauged N = 4B supersymmetric sigma model

We directly start with the gauged N = 4B supersymmetric sigma model, referring
to [11] for more details on the ungauged version. The new terms in the Lagrangian, in
addition to (6) are

L(1)
F = − i

2
FABχAχB, L(2)

F =
i
2

GABχAĎtχ
B − 1

12
∂[ACBCD]χ

AχBχCχD (26)

where we defined the gauge-covariant derivative Ďt in terms of the torsionful covariant
derivative ∇̌ as

Ďtχ
A := ∇̌tχ

A + aI
(
∇AkIB +

1
2

CA
BCkC

I

)
χB;

∇̌tχ
A := χ̇A +

(
ΓA

BC +
1
2

CA
BC

)
ẋBχC.

(27)

TheN = 4B Poincaré supersymmetry transformations parametrized by 4 real fermionic
parameters ερ, ρ = 1, . . . , 4 and the R̃-symmetries respectively act as

δεxA = −i(Jρ)A
BερχB

δεaI = 0

δεχA = ( J̄ρ)A
BερDtxB + i∂C(Jρ)A

BερχCχB

δr̃xA = 0

δr̃aI = 0

δr̃χA =
1
2

r̃i(Ji)A
BχB.

(28)

where we have defined Jρ = (Ji, 1) and J̄ρ = (−Ji, 1) for i = 1, 2, 3. In addition to the gauge
transformation laws given in (7), we now introduce

δλχA = λI∂BkA
I χB. (29)

Summarized, N = 4B supersymmetry and gauge invariance require the following
structural (SC) and geometric conditions (GC) on the target space in addition to (6-10)

SC : (Ji)A
C(J j)C

B = −δijδA
B + εijk(Jk)A

B, 0 = N (Ji, J j)A
BC (30)

0 = LkI Ji (31)

GC : 0 = LkI CABC, 0 = ∇̌A(Ji)B
C (32)

0 = GAC(Ji)C
B + GCB(Ji)C

A, 0 = FAC(Ji)C
B + FCB(Ji)C

A (33)

Let us briefly explain that the condition (30) is required by the closure of the algebra
demanding Ji, i = 1, 2, 3 to form an integrable quaternionic structure. We also introduce
the Nijenhuis concomitant

N (Ji, J j)A
BC ≡ (J(i)D

[B∂|D|(J j))A
C] − (J(i)A

D∂[B(J j))D
C]. (34)

The second structural condition (31) requires the kI to be tri-holomorphic and follows
from the closure of the combined algebra of gauge and supersymmetry transformations.
The first condition in (32) is needed for the invariance of L(2)

F under global shift symmetries
whereas the second one, ∇̌A(Ji)B

C = 0 means that the three different complex structures
are covariantly constant with respect to the same torsionful covariant derivative ∇̌. Using
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this relation, one can show the Hermiticity of the four-form dC, i.e., ∂[ECBCD](Ji)E
A = 0

which is needed for the invariance of the action. The two conditions in (33) state that the
field strength FAB and the metric GAB are simultaneously Hermitian with respect to all
three complex structures Ji. The second condition in (32) together with the first one in (32)
define a weakly hyperKähler with torsion (wHKT) manifold [11]. These two, along with the
Hermiticity condition of the field strength FAB are required by the action invariance under
N = 4B supersymmetry and R̃-symmetries2.

3.2. D(2, 1; α) superconformal invariance

The last step is to require conformal invariance for the gauged N = 4B sigma
model. This will enhance the symmetry group to the one-parameter superconformal
group D(2, 1; α) where α is determined by the transformation of supercharges under sec-
ond R−symmetry in the group. Under conformal transformations parameterized by P(t),
the fermionic fields transform as

δPχA = Pχ̇A + Ṗ
(

∂BξAχB +
1
2

χA
)

. (35)

For more convenience, let us also define vector fields ωA
ρ and one forms VρI

A as following

ωA
ρ = ( J̄ρ)

A
BξB
⊥, ρ = 1, . . . , 4

VρI
A = (Jρ)B

A∂BhI .
(36)

We furthermore combine supersymmetry and superconformal transformations pa-
rameterized by two time-independent Grassmann variables ερ and ηρ, respectively. The
result will be a fermionic transformation parameterized by Σρ = ερ + ηρt. The fields trans-
formation laws under this fermionic transformation and the second su(2) R−symmetry
generated by commutators of fermionic transformations are determined as

δΣxA = −i(Jρ)A
BΣρχB

δΣaI = 2iVρ I
A Σ̇ρχA

δΣχA = ( J̄ρ)A
B

(
ΣρDtxB + 2Σ̇ρξB

⊥

)
+ i∂C(Jρ)A

BΣρχCχB

δrxA = (1 + α) riωA
i

δraI = −(1 + α) riVi I
A DtxA

δrχA = (1 + α) ri
(

∂BωA
i + ViI

B kA
I

)
χB.

(37)

Finally, assuming previous transformation rules and older conditions given by (6-
10,18-24, 26-27,35,37,30-33), the set of new commutators of the D(2, 1; α) generators and
new conditions required by the closure of the superconformal algebra are

2 Requiring invariance only under Poincaré supersymmetry without imposing the R̃-invariance leads to a
slightly weaker set of conditions spelled out in [11].
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A : [δr1 , δr2 ] = δr3 + δλ ri
3 = εijkrj

1rk
2,

λI = (1 + α)2εijkrj
1rk

2Lωi h
I (38)

[δr̃1 , δr̃2 ] = δr̃3 r̃i
3 = −εijk r̃j

1r̃k
2 (39)

[δr1 , δr̃2 ] = δr̃3 r̃i
3 = εijkrj

1r̃k
2 (40)

[δP, δΣ1 ] = δΣ2 Σ2ρ = −PΣ̇1ρ +
1
2

ṖΣ1ρ (41)

[δr, δΣ1 ] = δΣ2 + δλ Σ2ρ =
1
2

(
ji− + ji+

)
ρσ

riΣ1σ

λI = (1 + α)Vi I
A riδΣ1 xA (42)

A : [δr̃, δΣ1 ] = δΣ2 Σ2ρ = −1
2
(ji+)ρσΣσ r̃i (43)

[δΣ1 , δΣ2 ] = δP + δr + δr̃ + δλ P = 2iΣ1ρΣ2ρ

ri =
2i

1 + α
(ji−)ρσ(Σ̇1ρΣ2σ − Σ1ρΣ̇2σ)

r̃i =

(
2αi

1 + α
ji+ −

2i
1 + α

ji−

)
ρσ

(Σ̇1ρΣ2σ − Σ1ρΣ̇2σ)

λI = −2i
(

aIΣ1ρΣ2ρ + hI d
dt
(Σ1ρΣ2ρ)

)
(44)

SC : Lξ(Ji)A
B = 0 ∂[AViI

B] = 0 (45)

Lωi (J j)A
B =

1
1 + α

εijk(Jk)A
B + kA

I ViI
C (J j)C

B − (J j)A
CkC

I ViI
B (46)

GC : LξCABC = −CABC CABCξC
⊥ = 2kI[A∂B]h

I (47)

Here, (ji±)µν := ∓(δµiδν4 − δµ4δνi)− εiµν4 denote the (anti-)selfdual ’t Hooft symbols.

4. Conclusions and Discussion

We highlight some of the results of this investigation

• The set of constraints we obtained for D(2, 1; α) symmetry of the gauged superconfor-
mal sigma model turns out to be a deformed version of its ungauged counterpart. In
particular, in the ungauged case, conformal invariance requires the one-form dual to
the vector ξ to be exact [9,10], while in the gauged model it is sufficient that this holds
for its projection ξ⊥ orthogonal to the symmetry orbits. Therefore, the gauging proce-
dure can be seen through the digression of vector ξ⊥ from ξ, which is parametrized by
the potentials hI(x). It turns out then that those models with nonvanishing hI are only
scale invariant before gauging. It is just through gauging (part of) their isometries that
they can admit full conformal invariance via the existence of ξ⊥ that satisfies (17).

• An application of, and motivation for, the work of [4] is provided by the Coulomb
branch quiver mechanics describing the dynamics of D-brane systems in an AdS2
scaling limit. As a special class, these systems exhibit D(2, 1; 0) symmetry [6]. They
are important due to their connection to (n)AdS2/(n)CFT1 and black hole physics.
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