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Abstract: Analytical spherically symmetric static solution to the set of Einstein and Klein-Gordon 

equations in a synchronous reference frame is considered. In synchronous reference frame, a static 

solution exists in the ultrarelativistic limit 3/−=p . Pressure p is negative when matter tends to 

contract. The solution pretends to describe a collapsed black hole. The balance at the boundary 

with dark matter ensures the static solution for a black hole. There is a spherical layer inside a black 

hole between two "gravitational" radii gr  and gh rr  , where the solution exists, but it is not 

unique. In a synchronous reference frame ikgdet  and 
rrg  do not change signs. The 

non-uniqueness of solutions with boundary conditions at grr =  and hrr =  makes it possible 

to find the gravitational field both inside and outside a black hole. The synchronous reference 

frame allows one to find the rest mass of the condensate. In the model "λ|ψ|⁴" total mass 

( ) hrkcM 2/3 2=  is three times of what a distant observer sees. This gravitational mass defect is 

spent for bosons to be in the bound ground state, and for the balance between elasticity and density 

of the condensate. 

Keywords: black hole; dark matter; gravitating Bose-Einstein condensate; synchronous reference 

frame 

 

1. Introduction. In Schwarzschild coordinates 

When we consider a gravitational field created by spherically symmetric matter, it is 

customary to proceed from the Schwarzschild metric [1]:  

 

Exponential representation 12

11

F
eg −=  and 02

00

F
eg =  fixes signs of the metric tensor 

components 0,0 1100  gg  and the determinant 0det = ikgg . According to 

Einstein's hypothesis [2] ikgdet  "always has a finite and negative value". Setting 

12

11

F
eg −=  in the metric (1), we fix the sign of the component g11. Thus, not caring about 

the presence or absence of a singularity, we exclude g11 > 0 from consideration as 

non-physical. In this case, the coordinate system turns out to be incomplete [3–5]. A crit-

ical mass crM  arises (for neutron stars it is of the order of the Sun mass), so that for 

crMM   regular static solutions to Einstein equations do not exist [6–8]. Shwartzshild’s  
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solution [1]  

( )( ) ( ) ( )222221202 sin/1/1  ddrdrrrdxrrds gg +−−−−=
−

 (2) 

is not regular in the center r = 0, though it describes a gravitational field in a vacuum far 

away from spherically symmetric matter, regardless of the mass, seen by a distant ob-

server. For 
crMM  , metric (2) asymptotically coincides with the regular solution in [5] 

for grr  . 

It is believed that objects with a mass greater than the critical one are subject to un-

limited compression [9]. The absence of static solutions in metric (1) for objects with a 

mass greater than the critical one contradicts the existence of the object with a mass seven 

orders of magnitude greater than the Sun mass [10] in the center of our Milky Way galaxy. 

"Unlimitedly collapsing objects" at the centers of galaxies are called black holes. Black 

holes in the centers of galaxies, like the galaxies themselves, exist as long as the universe 

exists. If we assume that the contraction is non-stop, then at the centers of galaxies we 

meet a singularity, contrary to Einstein's hypothesis that "this is nowhere to be found"[2]. 

If we take into account that in the process of unlimited compression with increasing 

pressure chemical reactions transform neutrons into more "elementary particles", then it 

can slow down and even stop compression. In order to find a regular static solution, de-

scribing the state of matter to which a collapse can lead (with no restriction on mass), I 

had abandoned the sign-fixing representation 12

11

F
eg −= . It is sufficient to restrict our-

selves by a weaker condition of regularity: all invariants of the metric tensor are finite. 

With mass crMM  , in a static state, gravitational contraction is compensated by elas-

ticity of fermions. With crMM  , elasticity of fermions can not resist the gravitational 

contraction. For a degenerate relativistic Fermi gas, the critical mass 
23 /~ fPlfcr mMM [8]. The Planck mass 

510177.2/ −== kcMPl  g, mf is the fer-

mion mass, k is the gravitational constant. For neutron stars (neutron rest mass 
241067.1 −=fm g) the critical mass 

3310~fcrM g is of the order of the Sun mass.  

The static state of boson matter is energetically more preferable than that of fermi-

onic matter. Unlike fermions, all bosons in equilibrium at zero temperature are in the 

ground state. This ultra-quantum state of matter is called a Bose-Einstein condensate. In 

equilibrium, concentrations of particles, transforming one into another in chemical reac-

tions, depend on temperature and pressure, and do not depend on reaction channels ([11], 

§101). If we proceed from the modern Standard Model of “elementary” particles [12], 

then, in the state of equilibrium, massive Z- and W-bosons, the scalar Higgs boson, as 

well as bosonic quasiparticles of paired fermions (the Cooper effect [13]), can be domi-

nant. The wave function of a condensate of neutral bosons is the classical scalar field ([14], 

§30). 

Lagrangian L of a complex scalar field  : ( ) *

,

*

, UgL ki

ik −= . With a large 

mass of the condensate, in the expansion of the potential 

                    
( ) ( ) ( ) ...2/1/

422
++=  mcU   

 (3) 

the main first term is the source of gravity, m is the rest mass of a boson. Leaving only the 

first term in the potential (3), we are dealing with an ideal gas of noninteracting bosons. 

The second and following terms are corrections that take into account non-gravitational 

interactions, including elasticity of a condensate. Taking into account only two first terms 

in expansion (3) with  = const, we deal with a phenomenological model. This model can 

be named "
4 ". 

Equilibrium of a gravitating scalar field has been considered in a number of papers 

in relation to black holes and hypothetical boson stars, see [15]-[19] and references therein. 
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As in case of fermions, with the restriction 12

11

F
eg −= , equilibrium of a gravitating de-

generate Bose gas exists only if the mass M of the condensate is less than the critical mass 

bPlbcr mMM /~
2

 [20]. For Standard Model bosons (with the rest mass mb about 100 

GeV/c2) the critical mass of the condensate is 
1210~bcrM g. It is only about a million ton. 

With no restriction 12Frr eg
−

−= , a static solution to the set of Einstein and 

Klein-Gordon equations with mass crMM   exists [21]. In Schwarzschild coordinates, 

there are two real gravitational radii in this solution. The metric component ( )rg rr
 

changes sign twice: at grr =  inside the condensate and at gh rrr =  on its surface. 

Inside the spherical layer hg rrr   the metric component ( ) 0rg rr
, and the signa-

ture of metric tensor is (+,+−−). 

It follows from Einstein's equation (100.6) in [22] that if the energy density 

( ) ( ) 00

0 == hh rTr  on the condensate surface, then ( ) 0=h

rr rg  and 

( ) hh

rr rdrrdg /1/ −= . One can see from another Einstein’s equation (100.4) in [22], that 

the pressure ( ) ( ) 2/1 hh

r

rh rrTrp −=−=  does not vanish on the surface of the conden-

sate. Negative pressure means that gravitational forces are directed to compress the gas 

of bosons, and not to expand. 

The sphere hrr =  is the interface of a black hole and dark matter. The observed 

manifestations of dark matter, such as the rotation curves of galaxies, are adequately 

described by a longitudinal vector field [23]. A covariant divergence of a longitudinal 

vector field is a scalar. A Bose condensate wave function is a scalar also. Both satisfy the 

same Klein-Gordon equation, though the masses of their quanta are extremely different. 

Condition of regular continuity of pressure at the interface between a black hole and dark 

matter made it possible to determine the dependence of the plateau velocity (of galaxy 

rotation curves) on the mass of a black hole. See formula (68) in [21]. 

If in the potential (3) only the first term of expansion is used (ideal Bose gas with no 

elasticity), then the wave function of the condensate diverges logarithmically at the cen-

ter [21]. A regular at the center static solution to the set of Einstein and Klein-Gordon 

equations with mass crMM   exists in the model "
4 ", provided that there is a 

balance of elasticity and density of the condensate [24]. In the Schwarzschild coordinates, 

a solution with boundary conditions of regularity at the center exists, but it is unique only 

in the interval grr  0  . Solutions with boundary conditions on spheres r = rg and 

hrr =  where 0=rrg
 are not unique. This freedom makes it possible to find a solu-

tion with any mass crMM  , as well as to ensure the balance of a black hole with dark 

matter at the boundary. 

In the Schwarzschild coordinates in the “
4 ” model, static states of a black hole 

are determined by two free parameters. One of them characterizes elasticity of the con-

densate. It defines uniquely the density of a condensate  in the center, and the inner 

gravitational radius rg. Inside the sphere r < rg, the equation of state of the condensate is 

3/−=p      (4) 

while the energy density   and metric component 
00g  are independent of r. The 

second free parameter ensures the existence of a regular static solution with arbitrary 

mass M in the range Mcr < M < ∞ [25]. 

2. In synchronous coordinates 
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A reference frame with 0,1 000 == gg  is called synchronous. It is shown in 

[22], §97, that, on the one hand, it is possible to switch to a synchronous frame of refer-

ence in any space-time. On the other hand, it is argued that, generally speaking, 

"space-filling matter cannot be at rest with respect to a synchronous frame of reference." 

An exception "may occur only in special cases." This statement is based on the fact that in 

a synchronous frame of reference in statics the component of the Ricci tensor 00

0 =R , 

and the expression on the right side of the Einstein equation 

( ) 2/3)2/( 0

0

0

0 pTTR +=−=   
 

                                   

"is positive with any distribution of matter". Note that the pressure p is positive when 

matter tends to expand, and negative when matter tends to contract. From the point of 

view stated in [22], §97, the state of a condensate, compressed to the ultra relativistic limit 

(4) by its own gravitational field, should be considered as an "exception in a special case".  

It has been known since the time of Eddington [26] and Lemaître [27] that the grav-

itational radius rg, on which the component ( ) 0=g

rr rg , is not a physical singularity in 

the Schwarzschild metric. In the problem 4 at the end of §100 in [22], the transformation 

of the Schwarzschild metric (2) to the conformal Euclidean form is given. The 

non-uniqueness of the solution to the system of Einstein and Klein-Gordon equations 

with boundary conditions exactly on the gravitational radii grr =  and hrr =  where 

( ) 0=rg rr
 [25], is a feature of the Schwarzschild metric. In the conformal Euclidean 

form, ( )rg rr  does not vanish. 

In a synchronous frame of reference, a static spherically symmetric metric  

( ) ( )222)(22)(2202 sin21  ddedredxds
rFrF

+−−=      (5) 

contains two functions ( )rF1  and ( )rF2 , depending on one coordinate r. Unlike the 

Schwarzschild metric (1), the coordinate r is the true distance from the center. And the 

length of the central circle 2/ =  at a distance r from the center is 
( )

.2 2 rF
e  Radii r 

= rg and hrr =  are playing an important role in a synchronous reference system: solu-

tions to Einstein and Klein-Gordon equations with boundary conditions on these radii 

are not unique. However, the component ( )rg11  does not vanish now on the spheres r = 

rg and hrr = . Therefore, as it is customary for everyone, I am using here exponential 

representations ( ) ( ) ( ) ( )rFrF
ergerg 21 2

22

2

11 , −=−=  in the metric (5). Substitution 

    ( ) ( ) ( ) ( ) ( )( )rxFrFdrerxdredx
r

r

rFrF

22,,
0

11 ===   (6) 

makes the metric (5) containing only one function ( )xF2
: 

    ( ) ( )( )22222202 sin2  ddedxdxds
xF

+−−= . (7) 

Ricci tensor is diagonal: 

    ( ) 22

2

2

2

3

3

2

22

2

2

1

1

0

0 2,2,0
F

eFFRRFFRR
−

−+==+== . (8) 

Energy is the integral of motion in a time-independent gravitational field. The wave 

function of the boson condensate in the state with a certain energy E per particle 

( ) ( )xexx ciEx

E  /0 0

, =  satisfies the Klein-Gordon equation 

( ) ( ) ( )
2

;,

2/1
/detdet −=−−

−
Uggg

ml

lm

ikik
. The radial part ( )x  obeys the equation 

    ( ) ( ) 
222

2 //2 cEmcF  −+=+ . (9) 

Unlike the Schwarzschild metric, in equation (9) the coefficient at the highest derivative 

(unity) does not vanish anywhere. 
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Lagrangian of a scalar field ( ) *

,

*

, UgL ki

ik −=  does not depend on the deriva-

tives of the metric tensor ikg . The energy-momentum tensor of the condensate is de-

rived easily using the formula 
ikikik gLLgT +−= /2 : 

( )
222

2

422
0

0
2

1
 +













+

+
=

c

cmE
T


  

( )
222

2

422
1

1
2

1
 −













+

−
−=

c

cmE
T


  

( )
222

2

422
3

3

2

2
2

1
 +













+

−
−==

c

cmE
TT


 
. 

In the synchronous reference system 00

0 =R  (8). Therefore, it is convenient to work with 

the Einstein equations in the form 

k
c

TTR k

i

k

i

k

i 4

8
,

2

1 
 =








−= ,   

42cm 238 sec/1067,6 = − gcmk . (10) 

It follows from (8) and (10): 

( )
0

2

12

2

1 22

2

422
0

0 =












−

−
=− 

c

cmE
TT


 (11) 

In (11) ,2E , and 
42cm  are constants. Therefore, the wave function of the condensate 

  is also a constant: 

0, ==  const . (12) 

Using relations (9), (11), and (12), the energy of a boson E in the bound ground state and 

the balance between elasticity   and density 
2

  of a condensate are determined: 

3

2
,

3

1 2422 −== cmE . (13) 

( ) 
2

/ mc=  − parameter characterizing elasticity of a condensate in the model "
4 ". 

Taking into account (13), the energy-momentum tensor of the condensate 

0,
3

1
,

2
2

2
2

0

0 







=−=








== i

mc
pT

mc
T k

i

k

i

k

i 


. (14) 

corresponds to ultrarelativistic equation of state for the matter compressed by its own 

gravitational field. Einstein equations (10) with Ricci tensor (8) and energy-momentum 

tensor (14)  

( ) ,22 2

2

2 pFF −=+  (15) 

peFF
F 22 22

2

2

2 −=−+ − . (16) 

define the metric function ( )xF2 . These equations are not independent. Excluding 2F  , 

and subtracting (16) from (15), we get: 

peF
F −=− − 222

2
, (17) 

02

2 =+ − FeF . (18) 

Since const=  (12), the energy density   and pressure p  (14) are also constants. 

So, equation (18) is the derivative of equation (17). Multiplied by 22F
e , equation (17) is 

reduced to  

( )2
22 1/

FF
epdxde −= . (19) 

The partial derivative 22 /1
FF

eep −   suffers a discontinuity at ( ) 2/1
2

−
= pe

F  . Ac-

cording to the existence and uniqueness theorem (see [28], §3) ( ) 2/1
2

−
= pe

F   is a solu-

tion of Eq. (19). But it is not unique: ( ) ( )( )0

2/1
sin2 xxppe

F
−=

−
  is also a solution to 

Eq. (19). 0x  is the integration constant. The metric component ( ) ( )xF
exg 22

22 −= (7) has 

two solutions: a constant ( ) 1

22 )( −−= pxg   independent of x, and an oscillating func-

tion ( ) ( ) ( )( )0

21

22 sin xxppxg −−=
−

 . These solutions coincide periodically at 

( ) ( ),2/1
2/1

0 npxx ++=
−

  ,...2,1,0=n . 

In accordance with (6), for the general metric (5), the oscillating solution 
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( ) ( ) ( )





−= 

−
dxepprg

r

r

xF

0

121

22 sin   (20) 

contains an arbitrary function )(1 xF , 0r is an integration constant. At 0→  (in a 

vacuum), solution (20) establishes the relation between 11g  and 22g : 22

2

2211 4/ ggg = . 

One of these two functions is arbitrary. 

In a simple case ( ) 01 =xF , a regular solution at the center is 

( ) ( ) ( )rpperg
rF  21)(2

22 sin2
−

−=−= .  

It is unique only in the interval grr 0 , rg p 2/=  is the internal "gravitational 

radius". In the region grr  , equation (19) with the boundary condition 

( ) 1)(2 2
−

= pe grF
  is satisfied by both solutions. I prefer ( ) ( ) 1

22

−
−= prg   at grr  , 

because there is no reason to choose the oscillating one.  

In a synchronous reference frame, this is the same analytical solution as in [23] in 

Schwarzschild coordinates. It can be verified by putting ( ) 2

22 rrg −=  in formula (20) 

and solving this equation with respect to 
( )xF

e 1 . It will be obtained 

( ) ( ) ( ) 2211 3/11 xexg
xF +−=−=

−
 as in formula (41) in [23] (up to notation). Both, in 

the Schwarzschild metric, and in the synchronous metric, the inner gravitational radius is 

the boundary of the central region in which the solution is unique and independent of the 

mass of the entire condensate. In the region grr   the solution with the boundary con-

dition ( ) ( ) 1

22

−
= prg g   is not unique. This ambiguity makes it possible to choose a 

solution corresponding to a given mass of a condensate. The difference lies in the fact that 

in the Schwarzschild coordinates at the branch points gr  and hr  the metric compo-

nent ( ) 011 =rg , but in the synchronous reference system (7) 1)(11 −=rg , and nowhere 

does it vanish. 

The total mass inside a sphere of radius r is obtained by integrating the energy den-

sity ( ) :0

0 =rT  

( ) ( ) ( )drrgrTddcrM
r

22
0

0

0
0

2

0

2 sin 
−=



 .  

Total mass is ( ) g

g

g
rr

r

rr
r

k

c
rM 














−= ,sin

4

3 2 


, and 

( ) gg rrrr
k

c
rM 








−= ,

2

1

2

3 2

. 

The energy E of one particle in the condensate (13) is less than the rest energy of the same 

particle in a vacuum. In the “
4 ” model, elastic collisions of particles occur without 

dissipation. This model shows that one third of the total energy is spent creating the 

bound state for bosons. The second third provides a balance of density and elasticity. 

And only one third of the original rest mass remains as the source of the gravitational 

field. If the boundary of the condensate gh rr  , then the total mass of a black hole is 

three times greater than the Schwarzschild mass ( ) hrkcM 2/2= . This is the composi-

tion of gravitational mass defect in the “
4 ” model. 

3. Dark matter  
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The sphere hrr =  is the boundary separating a black hole and dark matter. Mani-

festations of dark matter are adequately described using a longitudinal vector field i  

[28]. Lagrangian: 

( ) )(2

; n

nm

m VL  −= . (21) 

For ideal gas of gravitating dark matter quanta the potential 

( ) ( ) dxxdVVVV n

n

n

n /, 00 ==   at 0=x . 

Dark matter energy-momentum tensor 

( )( ) i

k

m

mm

m

k

i

k

i VVT  00

2

; 2 +−= . (22) 

Outside a black hole, the right side of Einstein equations (10), in accordance with (22), has 

the form 

( ) ( )
( )





−

=−−
=−

.,

,,2

2

1
2

;

2

0

2

;

ri

riV
TT

m

m

rm

mk

i

k

i




         (23) 

With the Ricci tensor (8) and tensor (23), the Einstein equations outside the black hole 

reduce to ( ) ,02: 2;

0

0 =+


= rrm

m FR   ( )2

02

2

2

1

1 : rVFFR  −=+ , 

02: 22

2

2

2

2

2 =−+ − F
eFFR  

From equation ::0

0R  we obtain ( ) ( )rFr Cer 22−
= . C is the integration constant. Elimi-

nating 2F   from :1

1R  and :2

2R , we get the equation 22 42

0

22

2

FF
eCVeF

−− +=  . Mul-

tiplying by 24F
e , we reduce this equation to the form 

2

0

22 22 2/ CVedrde
FF +=  , 

determining the metric component ( )rg22  in the synchronous reference system: 

( ) ( ) ( ) h

rF
rrDrCVerg +−=−= ,

22

0

2

22
2  . (24) 

The dark matter Lagrangian (21) is required to have a negative 0V  . Note that 0V  < 0 

is also a condition of regularity at the center (formula (39) in [28]). Two integration con-

stants ( ) 1

0

22 −
−= VpC   and hrD −=  in (24) provide a smooth transition of the 

gravitational field through the boundary between a black hole and dark matter. In view 

of rg p 2/=  it is convenient to express ( )rg22  in terms of the gravitational radii rg 

and rh: 

( ) ( ) ( ) ( ) ( ) ( ) hhghggggg rrrrrrrrrrrrrrrg −−−−−= ,/2;,/2;,2/sin/2
22222

22  .  (25) 

Solution (25) for rg =1 and rh =5 is demonstrated in Figure 1. Since ( ) 011 hrg  in the 

synchronous reference frame, there is no reason to call rh an event horizon. 

g22 rrg rh

r2

1 2 3 4 5 6

1.2

1.0

0.8

0.6

0.4

0.2

0.2

 

Figure 1. Red line is ( )rg22  (25). rg =1, rh =5.  
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