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Abstract: Imaging based problem-solving approaches have shown an illustrative way of handling 1

problems for various scientific applications. With an increased demand for automation, artificial 2

intelligence techniques have shown an exponential growth in the recent years. In this context, deep 3

learning-based “learned” solutions are widely opted for many applications thus slowly becoming an 4

inevitable alternative tool. It is known that in contrast to the conventional “physics-based” approach, 5

deep learning models are known to be a “data-driven” approach where the outcomes are based on 6

data analysis and interpretation. Thus, the deep learning approaches have been applied for several 7

(optical and computational) imaging based scientific problems such as denoising, phase retrieval, 8

hologram reconstruction and histopathology, to name a few. In this work, we present two deep 9

learning networks for 3D image denoising and off-focus voxels removal. 10

Keywords: Optical 3D Imaging; unsupervised denoising; off-focus removal; Integral Imaging. 11

1. Introduction 12

Integral Imaging (II) is one of the passive three-dimensional (3D) imaging techniques 13

invented by Gabriel Lippmann in 1908 [1] and has received a wide attention as the applica- 14

tions of II spans over several research problems in optical engineering research areas [2–4]. 15

For instance, biomedicine, security, autonomous vehicles, and remote sensing, to name a 16

few [5]. 17

Efficacy of the advanced machine learning (ML) and deep learning (DL) algorithms 18

were shown to be producing the superior results in computer vision based applications. 19

Thereafter, such approaches have also extended to solve several problems in various other 20

scientific research areas. In particular, DL framework is proven to be an important tool to 21

make an automatic decision as it solves numerous image-based problems without much 22

human intervention. Convolution Neural Network (CNN) is a widely used DL algorithm 23

for several problems such as image classification [6], and autonomous driving [7], etc. 24

Furthermore, a CNN framework for 3D face recognition and classification in the photons 25

starved environment is also demonstrated [2,8]. 26

2. Integral Imaging 27

Integral Imaging (II) captures a 3D scene in the form of two-dimensional (2D) elemental 28

images (EIs) in addition to the directional information (i.e., angle of propagation). To 29

note, 3D scene reconstruction can be achieved in two ways: (i) optical methods and (ii) 30

computational methods [9]. In computational integral imaging (CII), a geometric ray back- 31

propagation method is employed which magnifies and superimposes the EIs onto each 32

other to reconstruct the 3D sectional images [10]. Consequently, the objects or 3D points 33

which are located at the corresponding depth position in an imaging plane is properly 34

overlapped and looks in focus, while the other points from different depth location does 35

not overlap properly hence appears off-focused or defocused. The defocused points in the 36

3D sectional image does not convey any valuable information and are therefore redundant. 37
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Recently, we have demonstrated a way to manually identify and remove the off-focused 38

points from a 3D sectional image [11]. Furthermore, under some special imaging scenarios 39

(e.g. biomedical imaging and night vision) low-light level or photons-starved illumination 40

conditions may be encountered. In such cases, since the image capturing happens at a 41

completely darker condition the recorded image looks degraded due to the presence of 42

noises [8,10]. Nevertheless, this system shown to be providing a better 3D reconstruction 43

in terms of PSNR even with fewer photons, e.g., 100 photons [10]. 44

2.1. Denoising 45

For image denoising, various methods have been proposed in the literature such as 46

prediction filtering, transform-based methods, rank reduction methods, and dictionary 47

learning methods, to name a few. In addition to these, DL algorithms have also been 48

applied for image-denoising problem [12]. In this regard, there are two ways that are 49

commonly followed to train the DL network: (i) Supervised and (ii) Unsupervised. First, 50

we discuss supervised learning where an under-complete autoencoder is used to denoise 51

the noisy 3D integral (sectional) images with a patch-based approach. In this process, the 52

noisy input 3D sectional image is divided into multiple patches, which are then used to 53

train the neural network in supervised manner (we use clean data as labels). We note, by 54

using the patch-based approach, the time required to prepare the labeled training data is 55

greatly reduced. Then after denoising, the acquired denoised patches can be combined via 56

an unpatching process. Figure 1 depicts the supervised denoising technique used on our 57

dataset [13]. To train the network, 20 epochs are employed with a learning rate of 0.001. 58

Figure 1. Denoised results for supervised learning.

Figure. 1(c) shows the denoised 3D sectional image. We analysed the performance 59

of the proposed method quantitatively in terms of peak signal-to-noise ratio (PSNR). For 60

instance, the PSNR value given in Fig. 1(c) is an estimation between Fig. 1(a) and Fig. 61

1(c). It is evident from the Fig. 1(c) that the proposed denoising method has a better 62

performance, in terms of PSNR. Second, we also tested the unsupervised learning for 3D 63

image denoising. For this study, we opted a U-Net architecture [8]. This is an end-to-end 64

fully unsupervised denoising approach where the noisy photons counted 3D sectional 65

image are fed as an input to the network. The major components in the U-Net are encoder 66

and decoder blocks with skip connection layers [14–16]. In addition to this, skip blocks 67

(SB) are added to the skip connection strategy in U-Net architecture to avoid vanishing 68

gradients problem. In the training process, 3D input image is given in the form of patches 69

to the network. The patched input image is converted to 1D vector and fed as an input to 70

the network. After removing the noises, we unpatch the 1D vector and convert back to the 71

size of input data. In our experiments, to test the performance of the proposed method, we 72

used two 3D objects: one is a tri-colored ball known as Object 1 in Fig. 2 (a) and second is a 73

toy bird referred as Object 2 in Fig. 2(a). Fig. 2(a) depicts the two 3D objects used in our 74

experiments and Fig. 2(b) and 2(c) show the clean sectional images i.e., reconstructed 3D 75

depth images via computational approach as described in [9] without using the photon 76

counting technique. To note, we used 20% of the PCSI patches for validation and 60% of 77

patches are allotted for training purpose. In this work, 15 epochs were used with a learning 78

rate of 0.001 to train the network. The PSNR values are given in Fig. 2. 79
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Figure 2. Denoised results: a1, b1, c1 represents noisy Photon counted 3D sectional image, TV
denoised image and result of our proposed denoising method when object 1 is in focus, respectively
and a2, b2, c2 represents the noisy Photon counted 3D sectional image, TV denoised image and result
of our proposed denoising method when object 2 is in focus, respectively.

Figure 3. Reconstructed 3D CII sectional images at various depth locations.

2.2. Off-focus removal 80

Several studies have been conducted to demonstrate the feasibility of combining 81

photons detection imaging or photons counting imaging (PCI) techqniue with the con- 82

ventional 3D integral imaging systems, known as photon counted integral imaging (PCII) 83

[2,9,10,17,18]. In such systems, it is known that the reconstructed depth images contain 84

both the focused and off-focused (or out-of-focus) voxels, simultaneously. Off-focused 85

pixels often look blurred and therefore do not convey acceptable information about the 86

scene. Several approaches have been proposed to efficiently remove the off-focused points 87

from the reconstructed 3D images[4,18]. We note that the existing approaches are subjective 88

as they involve manual calculation of algorithm parameters such as variance, threshold, 89

etc, which is time-consuming. 90

Here, we propose a new ensembled Dense Neural Network (DNN) model, that 91

comprises six different DNN models each trained with its own set of training dataset, 92

for removing the off-focused points from the 3D sectional images. It is known that data 93

pre-processing enhances the accuracy of the network, therefore, we used Otsu-thresholding 94

algorithm [19] to remove the unwanted (and obvious) background from the 3D sectional 95
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Figure 4. Reconstructed focused-only CII sectional images by using the proposed DL network.

images. In this work, we employed an ADAM optimizer to update the weights and bias 96

[13], and a standard Mean Squared Error (MSE) was used as the cost function in our training 97

process. To note, the proposed ensembled deep neural network is trained (supervised 98

way) using the conventional 3D sectional images from various depth locations and the 99

corresponding focused images (labels). We tested on the 3D scene which contains two toy 100

cars and one toy helicopter [13]. We used Intel® Xeon® Silver 4216 CPU @2.10 GHz (2 101

processors) with 256 GB RAM, 64-bit operating system to simulate the all the results. 102

Conclusion 103

In summary, we demonstrated that it is possible to use deep learning network to 104

solve some of the inherent problems of 3D optical imaging systems. For instance, we have 105

taken two important problems that are exists in 3D integral imaging systems i.e., denoising 106

and off-focus removal using two different dataset. For our study, it is evident that the 107

DL can be used to solve the problems are complex enough to carry out manually. It is 108

therefore expected to further expand our analysis on various other imaging modalities such 109

as Holography and Microscopy etc. 110
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