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Abstract: Incoherent digital holography (IDH) is a technique to obtain a three-dimensional (3D) 12 
image of spatially incoherent light diffracted from an object as an incoherent hologram. Color holo- 13 
graphic 3D motion-picture imaging of daily-use light at a frame rate of a color polarization-imaging 14 
camera can be achieved by the combination of IDH and single-shot phase-shifting interferometry. 15 
We show experimental results for color 3D motion-picture imaging in the presentation.  16 
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 18 

1. Introduction 19 
Incoherent digital holography (IDH) [1-14] is a three-dimensional (3D) image-sens- 20 

ing technique using interference of light and spatially incoherent light. The interference 21 
fringe image that contains 3D information of an object is obtained even for spatially and 22 
temporally incoherent light by generating two waves from an object wave and utilizing 23 
self-interference. A digital hologram of daily-use light can be obtained using IDH, and 24 
applications to fluorescence microscopy [15-20] and 3D imager [21-28] have been actively 25 
researched. Full-color holographic 3D imaging using IDH has been demonstrated even 26 
for sunlight [5,28].  27 

IDH has the ability for simultaneous imaging of multidimensional information such 28 
as a 3D image, multiple wavelengths [18-20,29-31], state of polarization, and variety of 29 
light [32]. Holographic quantitative phase imagers can be constructed using a small light 30 
emitting diode (LED) [33,34]. High-speed image sensing and robustness against external 31 
vibrations are important factors when constructing a multidimensional IDH system. Sin- 32 
gle-shot IDH [8-14] using single-shot phase-shifting [35-37] has been proposed as an IDH 33 
technique to satisfy the factors. In most of this IDH technique, holographic 3D imaging 34 
can be carried out using single-shot exposure of a polarization image sensor and a single- 35 
path interferometer. We briefly introduce these holography techniques and multidimen- 36 
sional imaging with this IDH technique.  37 

2. Digital holography systems adopting single-shot phase-shifting interferometry for 38 
multidimensional motion-picture imaging 39 

Figure 1 illustrates two-types of single-shot single-path digital holography (DH) sys- 40 
tems: single-shot full-color IDH system with birefringent materials [27,28] and single-shot 41 
DH system for quantitative phase imaging with LED light [34]. A single-path self-interfer- 42 
ence or self-reference interferometer is adopted to the IDH systems. In these IDH systems, 43 
two waves are generated from a wave diffracted from an object. Coherence length should 44 
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be considered to obtain a digital hologram of natural light because of its low temporal co- 1 
herence. These single-path IDH systems are designed to generate an interference fringe im- 2 
age of temporally incoherent light with high visibility. Optical-path-length difference be- 3 
tween the two waves is carefully adjusted using polarimetric optical elements. In. Fig. 1(a), 4 
a full-color hologram of natural light is obtained with a single exposure of a color polariza- 5 
tion image sensor and single-shot phase shifting. The DH system shown in Fig. 1(b) is based 6 
on self-reference interferometer and has improved the depth resolution of DH with an LED 7 
light in comparison to self-interference IDH [33,34].  8 

 9 

 10 
Figure 1. Single-shot single-path DH systems. (a) Single-shot full-color IDH system with birefrin- 11 
gent materials [27,28]. (b) Self-reference DH system with a commonly used light source [34].  12 

Figure 2 shows photograph of the constructed single-shot full-color IDH system and 13 
an example of experimental results obtained with the constructed IDH system. This IDH 14 
system can be used on a wood table to record a full-color hologram of objects illuminated 15 
by sunlight [27]. A full-color holographic image has been obtained from a single-recorded 16 
hologram using the constructed IDH system and an RGB-LED as shown in Figs. 2(b) and 17 
2(c). Video-rate full-color holographic 3D motion-picture imaging has also been experi- 18 
mentally demonstrated with the setup [28].  19 
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Figure 2. An optical implementation and an example of experimental results. (a) Constructed single- 2 
shot full-color IDH system with birefringent materials with a camera lens, termed “Holocamera.” 3 
(b) A recorded hologram with a holocamera and (c) the image reconstructed from (a).  4 

3. Conclusion 5 
We have briefly introduced single-shot single-path IDH for multidimensional imag- 6 

ing. As another remarks, the limitation of the measurement accuracy in interferometry and 7 
holography can be quantitatively evaluated based on the theory of quantum optics [38]. Al- 8 
gorithms and architectures for high-speed image reconstruction are also highly required 9 
for real-time measurement [39-41]. We will show experimental results for multidimen- 10 
sional holographic imaging of incoherent light such as sunlight and LED light in the 11 
presentation.  12 
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