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Abstract: This study compares the results of analyzing tsunami simulations that are based on two 

approaches of characterizing earthquake slips, i.e., uniform (simplistic) and heterogeneous 

(complex) distributions. The aim of this study is to compare how heterogeneous and uniform 

distributed data affect the classification of tsunami maximum near-shore tsunami amplitudes. Due 

to the lack of historical earthquake and tsunami data to train the forecasting model, 4000 stochastic 

tsunami simulations are employed. The focused location is Iwanuma, Japan, where ocean bottom 

sensors (OBS) S-net network has been deployed. Multiple linear regression combined with Akaike 

Information Criterion (AIC) is applied to the simulated off-shore wave amplitude data to fit the 

model. The estimated tsunami amplitude is classified into four levels of warning classes. The 

performance of the models is quantified by the accuracy of the confusion matrices and is compared 

with the base model that only uses earthquake information. The forecasting accuracy can be 

improved by 30% when the wave amplitude data are used as additional information. The 

heterogeneous slip-based model reaches a higher accuracy than the uniform-slip based model. The 

result of this study is particularly valuable for setting up an OBS-based system for monitoring the 

physical phenomena of tsunamis and choosing heterogeneous as a preferable slip distribution when 

tsunami events are simulated. 
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1. Introduction 

Tsunamis are rare events, but they can be destructive. In the last two decades, there 

are two most notable tsunami events (2004 Indian Ocean tsunami and 2011 Tohoku 

tsunami) that were triggered by mega earthquakes whose magnitude (M) were 9.0 or 

greater. Because of the increasing vulnerability of coastal regions on account of growing 

population and building asset development [1], research on tsunami early warning has 

been conducted by utilizing various techniques, such as using seismic source (earthquake 

moment) data [2] and using real-time wave data [3,4]. 

A tsunami early warning system can foretell the information about the amplitude of 

the tsunami wave and the tsunami arrival time. This study focuses on generating early 

warning at Iwanuma in Japan based on the maximum near-shore tsunami amplitude 

using a classification model by multiple linear regression (MLR). To fine-tune the model 

so that the model can capture the uncertainty from a variety of earthquakes that may 

happened in the future, synthetic earthquake source data and tsunami wave data are used 

because of lack of historical data. The synthetic slip distribution generated by a stochastic 

earthquake source model has an important effect on tsunami wave amplitude [5]. Thus, 

this study considered both uniform and heterogeneous slip distribution for data 

simulation and model comparison. 
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This study builds on the result by Li and Goda [6] and develops a tsunami 

classification model utilizing both uniform and heterogeneous event data. Two types of 

classification models, i.e. one model  trained with earthquake magnitude and location 

only, denoting  base model, and the other model with additional parameters from OBS, 

denoting sensor model, are developed under each distribution of data. The model 

performance of the sensor models is compared with the base model, and also compared 

against models trained with data with different distributions. The aim of this study is to 

use statistical regression-based methods to develop a tsunami amplitude classification 

model for early warning announcement and investigate how uniformly and 

heterogeneously distributed slip distributions affect the prediction of tsunami. 

2. Tsunami data and classification model 

2.1. Study area and S-net sensors 

Iwanuma is in the Tohoku region of Japan, bordered by the Pacific Ocean to the east 

(Figure 1). The epicenter of the 2011 Tohoku earthquake was about 80 km east of Iwanuma 

and Iwanuma faced the triggered tsunami directly. There are a total of 99 off-shore sensors 

that are employed in this study (Figure 1a) and all of them are used to fit the MLR model 

firstly. Then, a variable selection technique using AIC is applied to select six most 

informative sensors (Figure 1b), and an efficient simpler model is built [6]. The base model 

using earthquake magnitude (𝑥𝑚𝑎𝑔), earthquake epicenter latitude (𝑥𝑙𝑎𝑡), and longitude 

(𝑥𝑙𝑜𝑛 ) and the sensor model with additional wave amplitudes from six sensors (𝑥𝑖 , 𝑖 =

1,2, … ,6 ), and they can be presented as follows: 

𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 = 𝛽0 + 𝑥𝑚𝑎𝑔𝛽𝑚𝑎𝑔 + 𝑥𝑙𝑎𝑡𝛽𝑙𝑎𝑡 + 𝑥𝑙𝑜𝑛𝛽𝑙𝑜𝑛 (1) 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 = 𝛽0 + 𝑥𝑚𝑎𝑔𝛽𝑚𝑎𝑔 + 𝑥𝑙𝑎𝑡𝛽𝑙𝑎𝑡 + 𝑥𝑙𝑜𝑛𝛽𝑙𝑜𝑛 + ∑ 𝑥𝑖𝛽𝑖  

6

𝑖=1

 (2) 

There are two sensor models that fitted by the different data (i.e. uniform versus 

heterogeneous slip distributions). The number of explanatory variables (3 parameters 

from earthquake information plus 6 parameters from OBS) is the same for the two sensor 

models but the coefficients of parameters ( 𝛽 ) are different since one is fitted by 

heterogeneous slip data and the other is fitted by the uniform slip data. 

 
Figure 1. Map of Iwanuma and off-shore sensors: (a) 99 sensors before the AIC variable 

selection, (b) 6 sensors after the AIC variable selection. 
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2.2. Data and statistical methods 

This study generates 4000 stochastic earthquake and tsunami events for both uniform 

and heterogeneous distributions [7]. This study considers the range of earthquake 

magnitude M7.5-9.1 with a magnitude interval of 0.2. The wave amplitude is calculated 

based on physical governing equations [8] and the wave amplitude simulation starts 

when an earthquake occurs and ends after 120 minutes. The maximum wave amplitude 

during the first 3 minutes that collected by the off-shore sensors is used as explanatory 

variable to fit the model since enough information is contained in the first 3 minutes data 

collected by the off-shore sensors after an earthquake [6]. 

Figure 2 shows the plot of the maximum near-shore tsunami amplitude (response 

variable) of the heterogeneous slip distribution against the uniform slip distribution. At 

the same earthquake event, the heterogeneous distributed maximum near-shore tsunami 

amplitude tends to be greater than the uniform one (see Figure 2). The maximum near-

shore tsunami amplitude becomes greater as the earthquake magnitude increases, with 

average amplitude for the heterogeneous slip distribution increases from 0.58 m to 8.10 m 

and the average amplitude for the uniform slip distribution increases from 0.35 m to 3.6 

m. 

 
Figure 2. Comparison plots of simulated maximum near-shore tsunami amplitude: (a) the 

amplitude plot under earthquake magnitude 7.5-7.9, (b) the amplitude plot under 

earthquake magnitude 7.9-8.3, (c) the amplitude plot under earthquake magnitude 8.3-8.7, 

(d) the amplitude plot under earthquake magnitude 8.7-9.1. 

 

The response variable is the maximum near-shore tsunami amplitude, which is a 

continuous variable originally. Because the assumption of data distribution is normal in 

MLR, logarithmic transformation (based on Box-Cox transformation) is applied to the 

response variable to hold the normality. After the model predicts the value, the value will 

transform back to original unit. Then, it is transformed to a category variable (four classes: 

1st class is 0 – 2 m, denoting ‘low’; 2nd class is 2 – 5 m, denoting ‘moderate’; 3rd class is 5 – 

10 m, denoting ‘high’ and 4th class is over 10 m, denoting ‘critical’) under a criterion for 

tsunami hazard assessment at water level height scale [9]. The classification tsunami 

forecasting is more commonly for early waring announcement purpose, and it can be 

more easily accepted by the public. The accuracy of a confusion matrix (CM) is used to 

describe the model performance for classification problems. 

3. Results 

The tsunami classification model result is presented in Figure 3. Figure 3a shows the 

accuracy of the base model (39%) has a much lower accuracy than the sensor models. It is 

insufficient that only earthquake magnitude and location data are used for regression to 

forecast a tsunami amplitude. When the wave amplitude data collected by OBS are added, 

the accuracy of the heterogeneous slip-based model (78%) is doubled (Figure 3a,b), and 

the accuracy of the uniform slip-based model increases by 30% (Figure 3a,c). The 

heterogeneous slip-based model has approximately 10% higher accuracy than the uniform 
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slip-based model (Figure 3b,c). The latter is because the coefficients of the uniform slip-

based model are calibrated with simulated tsunami data with unrealistic earthquake slip 

distributions. 

 
Figure 3. Confusion matrixes with accuracy of three models: (a) CM of base model, (b) 

CM of heterogeneous slip-based sensor model, (c) CM of uniform slip-based sensor model. 

4. Discussion 

This study investigated that using wave amplitude data collected by OBS improves 

the tsunami classification by its wave amplitude. It is difficult to classify a tsunami 

amplitude using the model that is only trained with earthquake information in this study. 

The heterogeneous slip-based model achieves a higher accuracy than the uniform slip-

based model. For hypothetical tsunami simulations, a heterogeneous earthquake slip 

distribution is preferable, even though the process of generating heterogeneous 

distributed data is more complex than generating uniform distributed earthquake slip 

data.  

For studies in the future, several fields can be improved. Firstly, applying the tsunami 

early warning algorithm (model) to different regions with similar geophysical 

characteristics as Iwanuma. Besides, a different approach to reduce the number of 

explanatory variables by applying Lasso and Ridge regression. 
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