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Abstract: In this paper, we use the concept of measure of nocompactness and fixed point theorems
to investigate the existence and stability of solutions of a class of Hadamard-Stieltjes fractional
differential inclusion in an appropriate Banach space, these results are proven under sufficient
hypotheses. We also give an example to illustrate the obtained results.
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1. Introduction

In this work, we consider the following differential inclusion with initial conditionDγ
(

dw
dφ

)
(z) ∈ G(z, w(z)); z ∈ (1,+∞)

dw
dφ (1) = w0; w(1) = w1

(1)

where w0, w1 ∈ R, dw
dφ is the Stieltjes derivative of w with respect to φ, Dγ is the Hadamard

fractional derivative of order 0 < γ < 1, G : [1,+∞)×R→ P(R) is multivalued map and
P(R) is the family of all nonempty subsets of R.

2. Preliminaries

Assume that φ : R → R is monotone, nondecreasing and continuous from the left
everywhere. Dφ is the set of discontinuity points of φ. We denote by B(J), the Banach
space of bounded functions on the interval J = [1,+∞) equipped with the norm of uniform
convergence, and by Bφ(J) the subspace of bounded functions which are also φ-continuous
on J.

Theorem 1. Bφ(J) is a Banach space.

Let X and Y be two Banach spaces, we define

Pcl,cv,cp(X) = {Ω ∈ P(X); Ω is closed,convex,compact}.

Theorem 2 ([10]). Let G : X → Pcl,cv(Y) be a lower semicontinuous multifunction. Then G
admits continuous selection.

Theorem 3 ([10]). Let Ω be a nonempty, bounded, closed and convex subset of the Banach space
X with ψ is a measure of nocompactness in it and let G : Ω −→ Pcl,cv(Ω) be a closed. Assume
that there exists a constant k ∈ [0, 1) such that ψ(GA) ≤ kψ(A) for any nonempty subset A of Ω.
Then G has a fixed point in the set Ω.
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Remark 1. Let us denote by Fix G the set of all fixed points of the operator G which belong to Ω.
The set Fix G belongs to the family ker ψ see [10].

3. Main Results

Consider the function ψ defined on the familyMBφ(J) by the formula

ψ(Ω) = max
{

ωφ(Ω), ω+
φ (Ω)

}
+ lim sup

z→∞
diam Ω(z). (2)

Theorem 4. The mappings ψ is a measure of nocompactness in the space Bφ(J).

Consider the following inclusion

u(z) ∈ (Fu)(z); z ∈ J. (3)

Definition 1. The solution u = u(z) of (3) is said to be globally attractive if for each solution
v = v(z) of (3) we have that

lim
z→∞

(
u(z)− v(z)

)
= 0.

In the case when this limit is uniform i.e when for each ε > 0 there exists T > 1 such that∣∣u(z)− v(z)
∣∣ < ε, (4)

for z ≥ T, we will say that solutions of (3) are uniformly globally attractive.

Remark 2. The kernel ker ψ consists of nonempty and bounded sets Ω such that functions from Ω
are locally equiregulated on J and for each u, v ∈ Ω, (4) hold.

Let dw
dφ (z) = v(z) then w(z) = w0 +

∫ z

1
v(t)dφ(t) and (1) can be written as

v(z) ∈ w1 +
1

Γ(r)

∫ z

1

(
ln

z
t

)γ−1
G
(

t, w0 +
∫ t

1
v(τ)dφ(τ)

)
dt
t

, (5)

Denote |G(z, u)| = {|u|; u ∈ F(z, u)} and ‖G(z, u)‖ = H(G(z, u), 0) = sup{|u|; u ∈
G(z, u)}. The differential inclusion (1) will be considered under the following assumptions:

(H1) There exist continuous and bounded functions p, q : J → R+ such that

H(G(z, u), G(z, v)) ≤ p(z)|u− v|; z ∈ J,

for all u, v ∈ R, and

‖G(z, 0)‖ = H(G(z, 0), 0) ≤ q(z); z ∈ J.

(H2) For every (z, w) in J ×R, G(z, w) is a nonempty convex and closed subset of R.

(H3) Assume that

p∗ = sup
z∈J

∣∣∣∣ w0

Γ(γ)

∫ z

1

(
ln

z
t

)γ−1
p(t)dt

∣∣∣∣ < ∞,

q∗ = sup
z∈J

∣∣∣∣ 1
Γ(γ)

∫ z

1

(
ln

z
t

)γ−1
q(t)dt

∣∣∣∣ < ∞,

pφ = sup
z∈J

∣∣∣∣ 1
Γ(γ)

∫ z

1

(
ln

z
t

)γ−1
p(t)[φ(t)− φ(1)]dt

∣∣∣∣ < 1,

Remark 3. As observed there, G is lower semicontinuous, hence G admits continuous selection
(Theorem 2).
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Theorem 5. Under assumptions (H1) − (H3) The differential inclusion (1) has at least one
solution u = u(z) in the space Bφ(J). Moreover, solutions of the differential inclusion (1) are
globally attractive.

Proof. Consider the multi-valued operator N defined on the space Bφ(J) in the following way:

N : Bφ(J)→ P
(
Bφ(J)

)
;

such that, for each u ∈ Bφ(J)

(Nw)(z) =
{

u ∈ Bφ(J) | u(z) = w1 +
1

Γ(r)

∫ z

1

(
ln

z
t

)γ−1
g
(

t, w0 +
∫ t

1
w(τ)dφ(τ)

)
dt
t

}
,

where g is a selctor of G. For each w in Bφ(J), and for each function u in Nw, we have u
is φ-continuous on J. Next, let us take an arbitrary function w ∈ Bφ(J), u ∈ Nu and fixed
z ∈ J, we get

|u(z)| ≤ |w1|+ p∗ + ‖w‖pφ + q∗.

So, the operator N is well defined. We take

ζ =

|w1|+
p∗

Γ(γ)
+

q∗

Γ(γ)
1− pφ

.

We deduce that the operator N : Bζ −→ P(Bζ). Further, the set Nu is closed and
convex in Bζ . Now, we take a nonempty Ω ⊂ Bζ , for T > 1, z1, z2 ∈ [1, T] with z1 < z2 and
|φ(z2)− φ(z1)| ≤ ε for each ε > 0. Fix arbitrarily w ∈ Ω and u ∈ Nw, we obtain

ωφ(NΩ) = 0. (6)

For z0 ∈ J ∩ Dφ, fix z ∈ (z0, z0 + ε), we have

ω+
φ (NΩ) = 0. (7)

From (6) and (7), we infer that the set NΩ is equiregulated on J. Further, for w, w′ ∈ Ω,
u ∈ Nw and u′ ∈ Nw′ and an arbitrary fixed z ∈ [1, T], we get

lim sup
z→∞

diam NΩ(z) ≤ pφ lim sup
z→∞

diam Ω(z). (8)

Consequently, in view of (6)–(8), we deduce that

ψ(NΩ) ≤ pφψ(Ω).

Then, by the Theorem 3 the operator N has at least one fixed point in Bζ which is a
solution of differential inclusion (1). Moreover, taking into account the fact that the set
Fix N ∈ ker ψ (Remark 1) and the characterization of sets belonging to ker ψ (Remark 2),
we conclude that all solutions of (1) are globally attractive in the sense of Definition 1.

4. Example

We consider the following differential inclusionDγ
(

dw
dφ

)
(z) ∈

[
e−z

|u(z)|+z , (z−1)e−z

|u(z)|+z

]
⊂ R; z > 1,

dw
dφ (1) = w0; w(1) = w1.

(9)
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It is clear that (9) can be written as the differential inclusion (1), where φ(τ) =
arctan([τ]) (the symbol [τ] indicates the integer value of τ). Let us show that conditions
(H1)− (H3) hold. For z ∈ J and u, v ∈ R, we have

H(F(z, u), F(z, v)) ≤ (z− 1)e−z|u− v|.

So p(z) = (z− 1)e−z, F(z, 0) =
[
inf
{

e−z

z , (z−1)
z e−z

}
, max

{
e−z

z , (z−1)
z e−z

}]
, hence

‖F(z, 0)‖ = max
{

e−z

z
,
(z− 1)

z
e−z
}

= q(z).

Notice that the functions p, q are continuous and bounded on J. Next, for a fixed z ∈ J,
we have p∗ < 1. This estimate show that p∗ and q∗ are finite quantities. Consequently
from Theorem 5 the differential inclusion (9) has at least solution in the space Bφ(J) and
solutions of (9) are globally attractive.
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