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Abstract: In this paper, different types of nonlinear delay differential equations are solved using the 

hybrid technique of the differential transform and the Bell polynomial. The obtained results are 

compared to those obtained previously. The nonlinear terms involved in delay differential equa-

tions are handled efficiently with the help of Bell polynomials. The presented technique has been 

tested on three concrete problems. Different types of errors, such as absolute and maximal, are com-

puted to show the effectiveness and reliability of the method. 
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1. Introduction  

Integer and non-integer nonlinear delay differential equations (NDDEs) find appli-

cations in mathematical modeling and processes. Many researchers have attempted dif-

ferent analytical and numerical methods to obtain their solution. Each method has its own 

strengths and limitations; the details can be seen in [1–4,6,8,10,11]. While solving NDDEs, 

nonlinear terms are to be handled efficiently. Hence, we require a technique that can deal 

with different kinds of nonlinear terms such as algebraic, logarithmic, trigonometrical, etc. 

Differential transformation combined with Bell polynomials is one of the suitable tech-

niques to solve NDDEs. The details about differential transforms and Bell polynomials 

can be found in [5,7,9] and the references therein. The main aim of the paper is to solve 

NDDEs using a hybrid technique of differential transforms and Bell polynomials. 

The paper is organized as follows: In Section 2, we discuss the algorithm of the 

method, and in Section 3, we discuss the results and discussion. The conclusion is in Sec-

tion 4. 

2. Description of the Method 

In this paper we consider following system of p proportional delay differential equa-

tions 

where 
( ) ( ) ( ) ( ) ( ) ( )( ), ,

T
n

w v = 
n n

1 pw v w v  , ( ) ( ) ( )( ), ,
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m v = 1 pm v m v   and ( ) ( ) ( )( ), ,
T

h w = 1 ph w h w  are p-dimensional vec-

tor functions and h(w) is nonlinear function represented as 
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( ), , , 1, 1, .i j i jl J b q a    R N  and ( ).m  are some functions of , iv f  are contin-

uous known functions, ig w=  are continuous unknown functions and ( )
( )

.
n

is the nth 

derivative of the function w. 

Steps of the method can be described as 

Step 1: Apply differential transform to initial conditions (2) 

Step 2: Apply differential transform to Equation (1) and bell polynomials to nonlin-

ear terms available in Equation (1). 

Step 3: Obtain a recursion system using Step 1 and Step 2. 

Step 4: Solve the recursive system obtain in Step1 and Step 2 and determine un-

knowns W(0), W(1). 

Step 5: Using inverse differential transform obtain series solution for problem (1) and 

(2). 

3. Results and Discussion 

We present three numerical examples of NDDEs to show efficiency and reliability of 

the presented method. All computations have been carried out in MATHEMATICA soft-

ware. 

Example 1. Consider the following nonlinear delay differential equation. 

( ) ( ) 2''' 2 ' 8 1
2 2

v v
w v w v w w

   
= − + −   

   
 (3) 

with initial conditions 

( ) ( ) ( )0 1 0 0 0 4= = = −, ' , ''w w w  (4) 

The exact solution is given by 

( ) cos2w v v=  (5) 

Table 1. Comparison of numerical solution wN (v) with exact solution when N = 15 for example 1. 

v w(v) wN(v)  RN(v) 

0.1 0.98006658 0.98006658  0 

0.2 0.92106099 0.92106099  1.2 × 10−16 

0.3 0.82533561 0.82533561  1.3 × 10−16 

0.4 0.69670671 0.69670671  1.9 × 10−15 

0.5 0.54030231 0.54030231  8.8 × 10−14 
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Example 2. Consider the following nonlinear delay differential equation 

( ) 3'' 2ln 9 2
3 3

v v
w v w w v

    
= + −    

    
 (6) 

with initial conditions 

( ) ( )0 1 0 3= =, 'w w  (7) 

The exact solution is given as 

( ) 3= vw v e  (8) 

Table 2. Comparison of numerical solution wN (v) with exact solution when N = 10 for Example 2. 

v w(v) wN(v) RN(v) 

0.1 1.3498588 1.3498588 3.3 × 10−14 

0.2 1.8221188 1.8221188 5.2 × 10−11 

0.3 2.4596031 2.4596031 3.4 × 10−9 

0.4 3.3201169 3.3201167 6.2 × 10−8 

0.5 4.4816891 4.4816866 5.5 × 10−7 

0.6 6.0496475 6.0496286 3.1 × 10−6 

0.7 8.1661699 8.1660639 1.2 × 10−5 

0.8 11.023176 11.022702 4.3 × 10−5 

0.9 14.879732 14.877945 1.2 × 10−4 

1.0 20.085537 20.079665 2.9 × 10−4 

Example 3. Consider following nonlinear delay differential equation 

( ) ( ) 22 22 1 ' 2 2 3 1

v v
w w

v w v ve e v v

   
   
   + = + − − +  (9) 

with initial conditions 

( )0 0w =  (10) 

Exact solution is given as 

( ) ( )log 2 1w v v= +  (11) 

Table 3. Comparison of numerical solution wN (v) with exact solution when N = 15 for Example 3. 

v w(v) wN(v) RN(v) 

0.1 0.18232156 0.18232156 1.8 × 10−12 

0.2 0.33647224 0.33647226 5.7 × 10−8 

0.3 0.47000363 0.4700149 2.3 × 10−5 

0.4 0.58778666 0.58879092 1.7 × 10−3 

0.5 0.69314718 0.72537185 4.6 × 10−2 
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4. Conclusions 

We propose a new technique to handle nonlinear delay differential equations. The 

main advantage of this approach is application of Bell polynomials in order to resolve 

nonlinearity. The technique is straight forward and can be applied to other higher order 

nonlinear DDEs. 
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